[en] Metal matrix composites (MMCs) offer the possibility to enhance the mechanical properties of metallic materials and develop new functionalities, as self-lubrication or self-cleaning. In recent years, laser additive manufacturing (AM) has imposed itself as a powerful method for the production of MMCs. MMCs may be produced in complex shapes, as coating or localized insert. The second phase of the composite may be produced in situ, i.e. by a chemical reaction during fabrication. Alternatively, the reinforcing phase may be mixed - ex situ - with the powder of the matrix, where dissolution of the second phase and interfacial reactions between the second phase and the matrix may also occur. Moreover, the extremely high cooling rates experienced during laser AM generally lead to out-of-equilibrium microstructures (chemical supersaturation and grain refinement). This chapter aims at reviewing the state-of-the-art concerning laser additive manufactured MMCs, focusing on the characterization of their complex microstructures and usage properties.
Disciplines :
Materials science & engineering
Author, co-author :
Mertens, Anne ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Science des matériaux métalliques
Language :
English
Title :
Metal matrix composites processed by laser additive manufacturing: microstructure and properties
Publication date :
2021
Main work title :
Handbook in Advanced Manufacturing - Additive manufacturing
Editor :
Riveiro, Antonio
Pou, Juan
Davim, J. Paulo
Publisher :
Elsevier, Cambridge, United States - Massachusetts
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
K.U. Kainer Basics of Metal matrix composites K.U. Kainer. Metal Matrix Composites. Custom-Made Materials for Automotive and Aerospace Engineering 2006 WILEY-VCH Verlag Weinheim.
A.D. Mogahdam., B.F. Schultz., J.B. Ferguson., E. Omrani., P.K. Rohatgi., N. Gupta Functional metal matrix composites: self-lubricating, self-healing, and nano-composites - an outlook J. Miner. Met. Mater. Soc. 66 2014 872-881.
A.I. Mertens., J. Lecomte-Beckers On the role of interfacial reactions, dissolution and secondary precipitation during the laser additive manufacturing of metal matrix composites: a review I.V. Shishkovsky. New Trends in 3D Printing 2016 InTech Rijeka.
L. Hao., S. Dadbakhsh., O. Seaman., M. Felstead Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development J. Mater. Process. Technol. 209 2009 5793-5801.
I.V. Shishkovskii., I.A. Yadroitsev., I.Y. Smurov Theory and technology of sintering, thermal and chemicothermal treatment: selective laser sintering/melting of nitinol-hydroxyapatite composite for medical applications Powder Metall. Met. C+ 50 2011 275-283.
X. Xu., J. Han., C. Wang., A. Huang Laser cladding of composite bioceramic coatings on titanium alloy J. Mater. Eng. Perform. 25 2016 656-667.
Y. Hu., W. Cong A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites Ceram. Int. 44 2018 20599-20612.
Z. Zhang., R. Kovacevic Laser Cladding of iron-based erosion resistant metal matrix composites J. Manuf. Process. 38 2019 63-75.
Y. Zhao., K. Feng., C. Yao., P. Nie., J. Huang., Z. Li Microstructure and tribological properties of laser cladded self-lubricating nickel-base composite coatings containing nano-Cu and h-BN solid lubricants Surf. Coating. Technol. 359 2019 485-494.
L. Wu., Z. Zhao., P. Bai., W. Zhao., Y. Li., M. Liang., H. Liao., P. Huo., J. Li Wear resistance of graphene nano-platelets (GNPs) reinforced AlSi10Mg matrix composite prepared by SLM Appl. Surf. Sci. 503 2020 144156.
S. Kumar., J.P. Kruth Composites by rapid prototyping technology Mater. Des. 31 2010 850-856.
R.M. Mahamood., E.T. Akinlabi Laser metal deposition of functionally graded Ti6Al4V/TiC Mater. Des. 84 2015 402-410.
E. Fereiduni., A. Ghasemi., M. Elbestawi Characterization of composite powder feedstock from powder bed fusion additive manufacturing perspective Materials 12 2019 10.3390/ma12223673.
G. Thawari., G. Sundarararjan., S.V. Joshi Laser surface alloying of medium carbon steel with SiC(p) Thin Solid Films 423 2003 41-53.
H. Yan., J. Zhang., P. Zhang., Z. Yu., C. Li., Y. Lu Laser cladding of Co-based alloy/TiC/CaF2 self-lubricating composite coatings on copper for continuous casting mold Surf. Coating. Technol. 232 2013 362-369.
S. Dadbakhsh., R. Mertens., L. Hao., J. Van Humbeeck., J.P. Kruth Selective laser melting to manufacture “in situ” metal matrix composites: a review Adv. Eng. Mater. 21 2019 1801244.
J. Xu., W. Liu Wear characteristic of in situ TiB2 particulate-reinforced Al matrix composite formed by laser cladding Wear 260 2006 486-492.
B. Du., Z. Zou., X. Wang., S. Qu Laser cladding of in situ TiB2/Fe composite coating on steel Appl. Surf. Sci. 254 2008 6489-6494.
L. Wang., J. Jue., M. Xia., L. Guo., B. Yan., D. Gu Effect of the thermodynamic behavior of selective laser melting on the formation of in situ oxide dispersion-strengthened aluminum-based composites Metals 6 2016 10.3390/met6110286.
A. Emamian., M. Alimardani., A. Khajepour Correlation between temperature distribution and in situ formed microstructure of Fe-TiC deposited on carbon steel using laser cladding Appl. Surf. Sci. 258 2012 9025-9031.
A. Emamian., M. Alimardani., A. Khajepour Effect of cooling rate and laser process parameters on additive manufactured Fe-Ti-C metal matrix composites microstructure and carbide morphology J. Manuf. Process. 16 2014 511-517.
N. Li., W. Liu., H. Xiong., R. Qin., S. Huang., G. Zhang., C. Gao In-situ reaction of Ti-Si-C composite powder and formation mechanism of laser deposited Ti6Al4V/(TiC+Ti3SiC2) system functionally graded material Mater. Des. 183 2019 108155.
H.C. Man., S. Zhang., F.T. Cheng., X. Guo In situ formation of a TiN/Ti metal matrix composite gradient coating on NiTi by laser cladding and nitriding Surf. Coating. Technol. 200 2006 4961-4966.
A. Riquelme., P. Rodrigo., M.D. Escalera-Rodriguez., J. Rams Effect of the process parameters in the additive manufacturing of in situ Al/AlN samples J. Manuf. Process. 46 2019 271-278.
S. Dadbakhsh., L. Hao Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composite J. Alloys Compd. 541 2012 328-334.
H. Tan., Z. Luo., Y. Li., F. Yan., R. Duan., Y. Huang Effect of strengthening particles on the dry sliding wear behavior of Al2O3-M7C3/Fe metal matrix composite coatings produced by laser cladding Wear 324-325 2015 36-44.
K.H. Lo., F.T. Cheng., C.T. Kwok., H.C. Man Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder Surf. Coating. Technol. 165 2003 258-267.
G. Abbas., U. Ghazanfar Two-body abrasive wear studies of laser produced stainless steel+SiC composite clads Wear 258 2003 258-264.
R. Anandkumar., A. Almeida., R. Vilar Wear behavior of Al-12Si/TiB2 coatings produced by laser cladding Surf. Coating. Technol. 205 2011 3824-3832.
X. Wen., Q. Wang., Q. Mu., N. Kang., S. Sui., H. Yang., X. Lin., W. Huang Laser solid forming additive manufacturing TiB2 reinforced 2024Al composite: microstructure and mechanical properties Mater. Sci. Eng. A 745 2019 319-325.
Y.K. Xiao., Z.Y. Bian., Y. Wu., G. Ji., Y.Q. Li., M.J. Li., Q. Lian., Z. Chen., A. Addad., H.W. Wang Effect of nano-TiB2 particles on the anisotropy in an AlSi10Mg alloy processed by selective laser melting J. Alloys Compd. 798 2019 644-655.
P.K. Farayibi., T.E. Abioye., A. Kennedy., A.T. Clare Development of metal matrix composites by direct energy deposition of ‘satellited’ powders J. Manuf. Process. 45 2019 429-437.
D. Gu., X. Rao., D. Dai., C. Ma., L. Xi., K. Lin Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: processing optimization, microstructure evolution and mechanical properties Additive. Manufact. 29 2019 100801.
M. Li., A. Fang., E. Martinez-Franco., J.M. Alvarado-Orozco., Z. Pei., C. Ma Selective laser melting of metal matrix composites: feedstock powder preparation by electroless plating Mater. Lett. 247 2019 115-118.
X.B. Liu., S.H. Shi., J. Guo., G.F. Yu., M.D. Wang Microstructure and wear behavior of γ-TiAl intermetallic alloy prepared by Nd: YAG laser cladding Appl. Surf. Sci. 255 2009 5662-5668.
Z. Zhao., P. Bai., R.D.K. Misra., M. Dao., M. Dong., R. Guan., Y. Li., J. Zhang., L. Tan., J. Gao., T. Ding., W. Du., Z. Guo AlSi10Mg alloy nanocomposites reinforced with aluminum-coated graphene: selective laser melting, interfacial microstructure and property analysis J. Alloys Compd. 792 2019 203-214.
A. Mertens., T. L’Hoest., J. Magnien., R. Carrus., J. Lecomte-Beckers On the elaboration of metal-ceramic coatings by laser cladding Mater. Sci. Forum 879 2017 1288-1293.
T. L’Hoest Production of Metal/ceramic Composite Coating by Laser Cladding Master Thesis 2015 University of Liège Belgium.
J.C. Betts., B.L. Mordike., M. Grech Characterisation, wear and corrosion testing of laser-deposited AISI316 reinforced with ceramic particles Surf. Eng. 26 2010 21-29.
B. Li., B. Qian., Y. Xu., Z. Liu., J. Zhang., F. Xuan Additive manufacturing of ultrafine-grained austenitic stainless steel matrix composite via vanadium carbide reinforcement addition and selective laser melting: formation mechanisms and strengthening effect Mater. Sci. Eng. A 745 2019 495-508.
F. Fazliana., S.N. Aqida., I. Ismail Effect of tungsten carbide partial dissolution on the microstructure evolution of a laser clad surface Optic Laser. Technol. 121 2020 105789.
K. Das., T.K. Bandyopadhyay., S. Das A review on the various synthesis routes of TiC reinforced ferrous based composites J. Mater. Sci. 37 2002 3881-3892.
S.K. Ghosh., P. Saha., S. Kishore Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg matrix composite prepared by direct metal laser sintering process Mater. Sci. Eng. A 527 2010 4694-4701.
F.T. Cheng., C.T. Kwok., H.C. Man Laser surfacing of S31603 stainless steel with engineering ceramics for cavitation erosion resistance Surf. Coating. Technol. 139 2001 14-24.
R. Anandkumar., A. Almeida., R. Vilar Microstructure and sliding wear resistance of an Al-12 wt.% Si/TiC laser clad coating Wear 282-283 2012 31-39.
A.I. Mertens., J. Delahaye., J. Lecomte-Beckers Fusion-based additive manufacturing for processing aluminum alloys: state-of-the-art and challenges Adv. Eng. Mater. 19 2017 1700003.
A. Riquelme., M.D. Escalera-Rodriguez., P. Rodrigo., E. Otero., J. Rams Effect of alloying elements added on microstructure and hardening of Al/SiC laser clad coating J. Alloys Compd. 727 2017 671-682.
A. Riquelme., P. Rodrigo., M.D. Escalera-Rodriguez., J. Rams Characterisation and mechanical properties of Al/SiC metal matrix composite coatings formed on ZE41 magnesium alloys by laser cladding Result. Phy. 13 2019 102160.
F. Chang., D. Gu., D. Dai., P. Yuan Selective laser melting of in-situ Al4SiC4 + SiC hybrid reinforced Al matrix composites: influence of starting SiC particle size Surf. Coating. Technol. 272 2015 15-24.
F. Li., Z. Gao., Y. Zhang., Y. Chen Alloying effect of titanium on WCp/Al composite fabricated by coincident wire-powder laser deposition Mater. Des. 93 2016 370-378.
J.D. Majumdar., A. Kumar., L. Li Direct laser cladding of SiC dispersed AISI 316L stainless steel Tribol. Int. 42 2009 750-753.
Q. Li., Y. Lei., H. Fu Laser cladding in-situ NbC particle reinforced Fe-based composite coatings with rare earth oxide addition Surf. Coating. Technol. 239 2014 102-107.
B. Song., S. Dong., C. Coddet Rapid in situ fabrication of Fe/SiC bulk nanocomposites by selective laser melting directly from a mixed powder of microsized Fe and SiC Scripta Mater. 75 2014 90-93.
A. Ramakrishnan., G.P. Dinda Microstructural control of an Al-W aluminum matrix composite during direct laser metal deposition J. Alloys Compd. 813 2020 152208.
X.P. Li., X.J. Wang., M. Saunders., A. Suvorova., L.C. Zhang., Y.J. Liu., M.H. Fang., Z.H. Huang., T.B. Sercombe A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility Acta Mater. 95 2015 74-82.
S. Marola., D. Manfredi., G. Fiore., M.G. Poletti., M. Lombardi., P. Fino., L. Battezzati A comparison of Selective Laser Melting with bulk rapid solidification of AlSi10Mg alloy J. Alloys Compd. 742 2018 271-279.
J. Delahaye., J.T. Tchuindjang., J. Lecomte-Beckers., O. Rigo., A.M. Habraken., A. Mertens Influence of Si precipitates on fracture mechanisms of AlSi10Mg parts processed by selective laser melting Acta Mater. 175 2019 160-170.
J.R. Croteau., S. Griffiths., M.D. Rossell., C. Leinenbach., C. Kenel., V. Jansen., D.N. Seidman., D.C. Dunand., N.Q. Vo Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting Acta Mater. 153 2018 35-44.
A.B. Spierings., K. Dawson., T. Heeling., P.J. Uggowitzer., R. Schaublin., F. Palm., K. Wegener Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting Mater. Des. 115 2017 52-63.
T. Maurizi Enrici., A. Mertens., M. Sinnaeve., J.T. Tchuindjang Elucidation of the solidification sequence of a complex graphitic HSS alloy under a combined approach of DTA and EBSD analysis J. Therm. Anal. Calorim. 141 2020 1075-1089.
Y. Song., G. He., Y. Wang., Y. Chen Tribological behavior of boron nitride nanoplatelet reinforced Ni3Al intermetallic matrix composite fabricated by selective laser melting Mater. Des. 165 2019 107579.
G. Lu., X. Shi., X. Liu., H. Zhou., Y. Chen., Z. Yang., Y. Huang Tribological performance of functionally gradient structure of graphene nanoplatelets reinforced Ni3Al metal matrix composites prepared by laser melting deposition Wear 428-429 2019 417-429.
V.K. Balla., A. Bhat., S. Bose., A. Bandyopadhyay Laser processed TiN Ti6Al4V composite coatings J. Mech. Behav. Biomed. 6 2012 9-20.
Q. Wei., S. Li., Q. Han., W. Li., L. Cheng., L. Hao., Y. Shi Selective laser melting of stainless steel/nano-hydroxyapatite composites for medical applications. Microstructure, element distribution, crack and mechanical properties J. Mater. Process. Technol. 222 2015 444-453.
R. Kumar., M. Antonov., U. Beste., D. Goljandin Assessment of 3D printed steels and composites intended for wear applications in abrasive, dry or slurry erosive conditions Int. J. Refract. Met. H. 86 2020 105126.
H. Yan., P. Zhang., Z. Yu., Q. Lu., S. Yang., C. Li Microstructure and tribological properties of laser-clad Ni-Cr/TiB2 composite coatings on copper with the addition of CaF2 Surf. Coating. Technol. 206 2012 4045-4053.
S. Wen., K. Chen., W. Li., Y. Zhou., Q. Wei., Y. Shi Selective laser melting of reduced graphene oxide/S136 metal matrix composites with tailored microstructures and mechanical properties, Mater Design 175 2019 107811.
X. Li., C.H. Zhang., S. Zhang., C.L. Wu., Y. Liu., J.B. Zhang., M. Babar Shahzad Manufacturing of Ti3SiC2 lubricated Co-based alloy coatings using laser cladding technology Optic Laser. Technol. 114 2019 209-215.
J.D. Majumdar., L. Li Studies on direct laser cladding of SiC dispersed AISI316L stainless steel Metall. Mater. Trans. 40 2009 3001-3008.
O. Ertugrul., T. Maurizi Enrici., H. Paydas., E. Saggionetto., F. Boschini., A. Mertens Laser cladding of TiC reinforced 316L stainless steel composites: feedstock powder preparation and microstructural evaluation Powder Technol. 375 2020 384-396.
T. Maurizi Enrici., O. Dedry., F. Boschini., J.T. Tchuindjang., A. Mertens Microstructural and thermal characterization of 316L + WC composite coatings obtained by laser cladding Adv. Eng. Mater. 22 12 2020 2000291.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.