Panerai, F., Ferguson, J.C., Lachaud, J., Martin, A., Gasch, M.J., Mansour, N.N., Micro-tomography based analysis of thermal conductivity, diffusivity and oxidation behavior of rigid and flexible fibrous insulators. Int. J. Heat Mass Transf. 108 (2017), 801–811 doi:10/f95p4d.
Ferguson, J.C., Panerai, F., Lachaud, J., Mansour, N.N., Theoretical study on the micro-scale oxidation of resin-infused carbon ablators. Carbon 121 (2017), 552–562 doi:10/gbptt2.
Szalai, C., Slimko, E., Hoffman, P., Mars Science Laboratory Heatshield Development, Implementation, and Lessons Learned. J. Spacecr. Rockets 51 (2014), 1167–1173 doi:10/f6ftx5.
Kontinos, D., Stackpoole, M., Post-Flight Analysis of the Stardust Sample Return Capsule Earth Entry. 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008, American Institute of Aeronautics and Astronautics, Reno, Nevada, 10.2514/6.2008-1197.
Bennett, A., Payne, D.R., Court, R.W., Pyrolytic and elemental analysis of decomposition products from a phenolic resin. Macromol. Symp. 339:1 (2014), 38–47 doi:10/f2rt6s.
Sykes, G.F., Decomposition Characteristics of a Char-Forming Phenolic Polymer Used for Ablative Composites. Tech. Rep. TN D-3810, 1967.
Goldstein, H.E., Pyrolysis kinetics of nylon 6–6, phenolic resin, and their composites. J. Macromol. Sci., Part A, Chem. 3:4 (1969), 649–673, 10.1080/10601326908053834.
Trick, K.A., Saliba, T.E., Sandhu, S.S., A kinetic model of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 35:3 (1997), 393–401, 10.1016/S0008-6223(97)89610-8.
Milos, F., Chen, Y.-K., Comprehensive model for multicomponent ablation thermochemistry. 35th Aerospace Sciences Meeting and Exhibit, Jan. 1997 doi:10/gc3g3z.
Lachaud, J., Scoggins, J.B., Magin, T.E., Meyer, M.G., Mansour, N.N., A generic local thermal equilibrium model for porous reactive materials submitted to high temperatures. Int. J. Heat Mass Transf. 108 (2017), 1406–1417, 10.1016/j.ijheatmasstransfer.2016.11.067.
Torres-Herrador, F., Meurisse, J.B.E., Panerai, F., Blondeau, J., Lachaud, J., Bessire, B.K., Magin, T.E., Mansour, N.N., A high heating rate pyrolysis model for the Phenolic Impregnated Carbon Ablator (PICA) based on mass spectroscopy experiments. J. Anal. Appl. Pyrolysis, May 2019 doi:10/gf27n7.
Tadini, P., Grange, N., Chetehouna, K., Gascoin, N., Senave, S., Reynaud, I., Thermal degradation analysis of innovative PEKK-based carbon composites for high-temperature aeronautical components. Aerosp. Sci. Technol. 65 (2017), 106–116 doi:10/f94vtf.
Rivier, M., Lachaud, J., Congedo, P.M., Ablative thermal protection system under uncertainties including pyrolysis gas composition. Aerosp. Sci. Technol. 84 (2019), 1059–1069 doi:10/ggd9mz.
Meurisse, J.B.E., Lachaud, J., Panerai, F., Tang, C., Mansour, N.N., Multidimensional material response simulations of a full-scale tiled ablative heatshield. Aerosp. Sci. Technol. 76 (2018), 497–511 doi:10/gc4pgh.
Jackson, W.M., Conley, R.T., High temperature oxidative degradation of phenol–formaldehyde polycondensates. J. Appl. Polym. Sci. 8:5 (1964), 2163–2193 doi:10/cbfhmp.
Stokes, E.H., Kinetics of pyrolysis mass loss from cured phenolic resin. J. Thermophys. Heat Transf. 9:2 (1995), 352–358, 10.2514/3.667.
Wong, H.-W., Peck, J., Assif, J., Panerai, F., Lachaud, J., Mansour, N.N., Detailed analysis of species production from the pyrolysis of the Phenolic Impregnated Carbon Ablator. J. Anal. Appl. Pyrolysis 122 (2016), 258–267 doi:10/f9h46d.
Bessire, B.K., Minton, T.K., Decomposition of phenolic impregnated carbon ablator (PICA) as a function of temperature and heating rate. ACS Appl. Mater. Interfaces 9:25 (2017), 21422–21437, 10.1021/acsami.7b03919.
Blondeau, J., Jeanmart, H., Biomass pyrolysis at high temperatures: prediction of gaseous species yields from an anisotropic particle. Biomass Bioenergy 41 (2012), 107–121 doi:10/f3zmcx.
Miller, R.S., Bellan, J., A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and liqnin kinetics. Combust. Sci. Technol. 126:1–6 (1997), 97–137, 10.1080/00102209708935670.
Di Blasi, C., Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34:1 (2008), 47–90 doi:10/cszkrc.
Ranzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G., Pierucci, S., Sommariva, S., Chemical kinetics of biomass pyrolysis. Energy Fuels 22:6 (2008), 4292–4300, 10.1021/ef800551t.
Blondeau, J., Investigation of pulverised biomass combustion: detailed modelling of particle pyrolysis and experimental analysis of ash deposition. Ph.D. thesis, May 2013, Université catholique de Louvain.
Torres-Herrador, F., Coheur, J., Blondeau, J., Meurisse, J., Panerai, F., Lachaud, J., Magin, T., Mansour, N.N., Comparison between traditional and competitive reaction models for the pyrolysis of high temperature aerospace materials. AIAA Aviation 2019 Forum, 2019, American Institute of Aeronautics and Astronautics, 10.2514/6.2019-3361.
Lautenberger, C., Fernandez-Pello, A.C., Optimization algorithms for material pyrolysis property estimation. Fire Saf. Sci. 10 (2011), 751–764.
Cheung, S.H., Miki, K., Prudencio, E., Simmons, C., Uncertainty quantification and robust predictive system analysis for high temperature kinetics of HCN/o2/ar mixture. Chem. Phys. 475 (2016), 136–152, 10.1016/j.chemphys.2016.05.026.
Galagali, N., Marzouk, Y.M., Bayesian inference of chemical kinetic models from proposed reactions. Chem. Eng. Sci. 123 (2015), 170–190, 10.1016/j.ces.2014.10.030.
Najm, H., Berry, R., Safta, C., Sargsyan, K., Debusschere, B., Data-free inference of uncertain parameters in chemical models. Int. J. Uncertain. Quantificat. 4 (2014), 111–132, 10.1615/Int.J.UncertaintyQuantification.2013005679.
Urzay, J., Kseib, N., Constantine, P.G., Davidson, D.F., Iaccarino, G., Uncertainty-quantifying models for chemical-kinetic rates. 2012, Center for Turbulence Research Annual Briefs.
Bruns, M.C., Inferring and propagating kinetic parameter uncertainty for condensed phase burning models. Fire Technol. 52:1 (2015), 93–120, 10.1007/s10694-015-0457-2.
Kennedy, M.C., O'Hagan, A., Bayesian calibration of computer models. J. R. Stat. Soc., Ser. B, Stat. Methodol. 63:3 (2001), 425–464, 10.1111/1467-9868.00294.
Smith, R.C., Uncertainty Quantification: Theory, Implementation, and Applications. 2014, Society for Industrial and Applied Mathematics, Philadelphia.
Houska, T., Kraft, P., Chamorro-Chavez, A., Breuer, L., SPOTting model parameters using a ready-made Python package. PLoS ONE, 10(12), 2015, e0145180 doi:10/gf27q5.
Duan, Q.Y., Gupta, V.K., Sorooshian, S., Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 76:3 (1993), 501–521 doi:10/dtf26t.
Robert, C.P., Casella, G., Monte Carlo Statistical Methods. 1999, Springer, N.-Y., 10.1007/978-1-4757-3071-5.
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., Equation of state calculations by fast computing machines. J. Chem. Phys. 21:6 (1953), 1087–1092, 10.1063/1.1699114.
Hastings, W.K., Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:1 (1970), 97–109, 10.1093/biomet/57.1.97.
Gilks, W.R., Richardson, S., Spiegelhalter, D.J., Markov Chain Monte Carlo in Practice. 1996, Chapman & Hall/CRC, London.
Torre, L., Kenny, J.M., Maffezzoli, A.M., Degradation behaviour of a composite material for thermal protection systems, part I: experimental characterization. J. Mater. Sci. 33:12 (1998), 3137–3143, 10.1023/A:1004399923891.
Wong, H.-W., Peck, J., Bonomi, R.E., Assif, J., Panerai, F., Reinisch, G., Lachaud, J., Mansour, N.N., Quantitative determination of species production from phenol-formaldehyde resin pyrolysis. Polym. Degrad. Stab. 112 (2015), 122–131, 10.1016/j.polymdegradstab.2014.12.020.
Koga, N., A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim. Acta 244 (1994), 1–20, 10.1016/0040-6031(94)80202-5.
Omidy, A.D., Panerai, F., Martin, A., Lachaud, J., Cozmuta, I., Mansour, N.N., Code-to-Code Comparison, and Material Response Modeling of Stardust and MSL using PATO and FIAT. Technical Report NASA/CR-2015-218960, Jun. 2015, NASA Ames Research Center.