[fr] Introduction. La gestion optimale de la fertilisation azotée des cultures nécessite l’utilisation de méthodes qui permettent
d’évaluer rapidement et avec précision le statut azoté de la biomasse aérienne en cours de saison. C’est le cas des mesures
optiques sur le végétal et parmi celles-ci, les approches basées sur la mesure de la fluorescence chlorophyllienne (ChlF) des
feuilles occupent une place intéressante. Les potentialités de la ChlF sont étudiées depuis plusieurs années pour détecter et
quantifier différents stress biotiques et abiotiques des plantes et la ChlF peut s’envisager pour l’évaluation du statut azoté. Ces
approches permettent a priori de pallier certaines limitations des méthodes souvent utilisées pour l’évaluation du statut azoté
basées sur la transmission ou la réflexion de la lumière et reliées à la teneur en chlorophylle des feuilles.
Littérature. Dans cette revue, deux approches basées sur la ChlF sont examinées. La première étudie la ChlF variable, ou
cinétique de Kautsky, qui représente l’approche classiquement abordée par la majorité des auteurs. La seconde approche
repose sur l’estimation par la ChlF de la concentration en composés foliaires métabolites de la plante, plus spécifiquement
la chlorophylle et les composés phénoliques (en particulier les flavonoïdes). Pour chaque approche, les caractéristiques de la
ChlF sont examinées, expliquant leurs liens et leurs applications dans l’évaluation du statut azoté des cultures.
Conclusions. Parmi les deux approches analysées, l’utilisation du rapport de ChlF qui combine l’estimation de la concentration
en chlorophylle et en flavonoïdes au niveau de la feuille apparait comme une approche potentiellement pertinente pour évaluer
le statut azoté des cultures, ces deux concentrations étant en relation étroite avec la teneur en azote des feuilles.
Research Center/Unit :
Centre Wallon de Recherches agronomiques - CRA-W
Disciplines :
Agriculture & agronomy
Author, co-author :
Ben Abdallah, Feriel ; Centre wallon de Recherches agronomiques > Productions agricoles
Goffart, Jean Pierre; Centre Wallon de Recherches Agronomiques > Département des services centraux
Philippe, William; Centre Wallon de Recherches Agronomiques > Productions agricoles
Language :
French
Title :
Utilisation de la fluorescence chlorophyllienne pour l’évaluation du statut azoté des cultures (synthèse bibliographique)
Alternative titles :
[en] Use of chlorophyll fluorescence for the evaluation of crops nitrogen status. A review
Publication date :
2016
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Agati G., Mazzinghi P., Fusi F. & Ambrosini I., 1995. The F685/F730 chlorophyll fluorescence ratio as a tool in plant physiology: response to physiological and environmental factors. J. Plant Physiol., 145(3), 228-238.
Agati G. et al., 2013. Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses. Eur. J. Agron., 45, 39-51.
Baker N.R., 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol., 59, 89-113.
Bilger W., Veit M., Schreiber L. & Schreiber U., 1997. Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. Physiol. Plant., 101, 754-763.
Björkman O. & Demmig B., 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489-504.
Blackmer T.M. & Schepers J.S., 1995. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J. Prod. Agric., 8(1), 56-60.
Bongue-Bartelsman M. & Phillips D.A., 1995. Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato plant. Physiol. Biochem., 33, 539-546.
Buschmann C., 2007. Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth. Res., 92(2), 261-271.
Butler W.L., 1978. Energy distribution in the photochemical apparatus of photosynthesis. Annu. Rev. Plant Physiol., 29, 345-378.
Cadet E., 2008. Détection et discrimination des carences en N, P et K par la fluorescence induite par UV chez le tournesol nain (Helianthus annuus, “Sunspot”). Mémoire : Université du Québec à Trois-Rivières (Canada).
Cartelat A. et al., 2005. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crop Res., 91, 35-49.
Cerovic Z.G. et al., 1999. Ultraviolet-induced fluorescence for plant monitoring: present state and prospects. Agronomie, 19, 543-578.
Cerovic Z.G. et al., 2002. The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ., 25(12), 1663-1676.
Cerovic Z.G., Masdoumier G., Ghozlen N.B. & Latouche G., 2012. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant., 146(3), 251-260.
Chishaki N. & Horiguchi T., 1997. Response of secondary metabolism in plants to nutrient deficiency. Soil Sci. Plant Nutr., 43, 987-991.
Ciompi S., Gentili E., Guidi L. & Soldatini G.F., 1996. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Sci., 118(2), 177-184.
Day T., Howells B.W. & Rice W.J., 1994. Ultraviolet absorption and epidermal-transmittance spectra in foliage. Physiol. Plant., 92, 207-218.
Demotes-Mainard S., Boumaza R., Meyer S. & Cerovic Z.G., 2008. Indicators of nitrogen status for ornamental woody plants based on optical measurements of leaf epidermal polyphenol and chlorophyll contents. Sci. Hortic., 115(4), 377-385.
Denuit J.P. et al., 2002. Management of nitrogen fertilization of winter wheat and potato crops using the chlorophyll meter for crop nitrogen status assessment. Agronomie, 22(7-8), 847-853.
Estiarte M. et al., 1999. Free‐air CO2 enrichment of wheat: leaf flavonoid concentration throughout the growth cycle. Physiol. Plant., 105(3), 423-433.
Evans J.R., 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78, 9-19.
Fortier E. et al., 2006. Influence of irrigation and nitrogen fertilization on broccoli polyphenolics concentration. Acta Hortic., 856, 55-62.
Genty B., Briantais J.-M. & Baker N.R., 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta, 990, 87-92.
Gianquinto G. et al., 2004. The use of hand-held chlorophyll meters as a tool to assess the nitrogen status and to guide nitrogen fertilization of potato crop. Potato Res., 47, 35-80.
Gitelson A.A., Buschmann C. & Lichtenthaler H.K., 1998. Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. J. Plant Physiol., 152, 283-296.
Gitelson A.A., Buschmann C. & Lichtenthaler H.K., 1999. The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sens. Environ., 69, 296-302.
Goffart J.-P., Olivier M., Destain J.-P. & Frankinet M., 2002. Stratégie de gestion de la fertilisation azotée de la pomme de terre de consommation. Gembloux, Belgique : Centre de Recherches agronomiques de Gembloux.
Goffart J.-P., Olivier M. & Frankinet M., 2008. Potato crop nitrogen status assessment to improve N fertilization management and efficiency: Past-present-future. Potato Res., 51, 355-383.
Henriques S., 2009. Leaf chlorophyll fluorescence: background and fundamentals for plant biologists. Bot. Rev., 75, 249-270.
Huot Y. & Babin M., 2010. Overview of fluorescence protocols: theory, basic concepts, and practice. In: Suggett D.J., Prášil O. & Borowitzka M.A., eds. Chlorophyll a fluorescence in aquatic sciences: methods and applications. Dordrecht, The Netherlands: Springer, 31-74.
Khamis S., Lamaze T., Lemoine Y. & Foyer C., 1990. Adaptation of the photosynthetic apparatus in maize leaves as a result of nitrogen limitation relationships between electron transport and carbon assimilation. Plant Physiol., 94(3), 1436-1443.
Krause G.H. & Weis E., 1991. Chlorophyll fluorescence and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol., 42, 313-349.
Lea U.S., Slimestad R., Smedvig P. & Lillo C., 2007. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta, 225, 1245-1253.
Lichtenthaler H.K. & Rinderle U., 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit. Rev. Anal. Chem., 9(1), 29-85.
Lichtenthaler H.K., Hak R. & Rinderle U., 1990. The chlorophyll fluorescence ratio F690/F730 in leaves of different chlorophyll content. Photosynth. Res., 25(3), 295-298.
Lillo C., Lea U.S. & Ruoff P., 2008. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ., 31, 587-601.
Løvdal T. et al., 2010. Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry, 71, 605-613.
Mauromicale G., Ierna A. & Marchese M., 2006. Chlorophyll fluorescence and chlorophyll content in field-grown potato as affected by nitrogen supply, genotype, and plant age. Photosynthetica, 44(1), 76-82.
Mercure S.A., Daoust B. & Samson G., 2004. Causal relationship between growth inhibition, accumulation of phenolic metabolites, and changes of UV-induced fluorescences in nitrogen-deficient barley plants. Can. J. Bot., 82(6), 815-821.
Mittelstraß K. et al., 2006. Modification of primary and secondary metabolism of potato plants by nitrogen application differentially affects resistance to Phytophthora infestans and Alternaria solani. Plant Biol., 8(5), 653-661.
Muñoz Huerta R.F. et al., 2013. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors, 13(8), 10823-10843.
Peng L. et al., 2008. An improved HPLC method for simultaneous determination of phenolic compounds, purine alkaloids and theanine in Camellia species. J. Food Compos. Anal., 21(7), 559-563.
Samson G. et al., 2000. Nutrient stress of corn plants: early detection and discrimination using a compact multiwavelength fluorescent lidar. In: Proceedings of EARSeL-SIG-Workshop LIDAR, June 16-17, 2000, Dresden/FRG, Germany.
Schächtl J. et al., 2005. Laser induced chlorophyll fluorescence measurements for detecting the nitrogen status of wheat (Triticum aestivum L.) canopies. Precis. Agric., 6, 143-156.
Sinclair T.R. & Vadez V., 2002. Physiological traits for crop yield improvement in low N and P environments. Plant Soil, 245, 1-15.
Stewart A.J. et al., 2001. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ., 24(11), 1189-1197.
Thoren D. & Schmidhalter U., 2009. Nitrogen status and biomass determination of oilseed rape by laser-induced chlorophyll fluorescence. Eur. J. Agron., 30, 238-242.
Tremblay N., Fallon E. & Ziadi N., 2011. Sensing of crop nitrogen status: opportunities, tools, limitations, and supporting information requirements. Hortic. Technol., 21(3), 274-281.
Tremblay N., Wang Z. & Cerovic Z.G., 2012. Sensing crop nitrogen status with fluorescence indicators. A review. Agron. Sustain. Dev., 32(2), 451-464.
Vos J. & Bom M., 1993. Hand-held chlorophyll meter: a promising tool to assess the nitrogen status of potato foliage. Potato Res., 36, 301-308.
Zhang Y. & Tremblay N., 2010. Evaluation of the Multiplex® fluorescence sensor for the assessment of corn nitrogen status. In: Proceedings of the International Conference on Precision Agriculture, July 18-21, 2010, Denver, Colorado, USA.