Fornasaro, Stefano; Raman Spectroscopy Lab, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, Trieste, 34100, Italy
Alsamad, Fatima; Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, Reims, 51097, France
Baia, Monica; Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu 1, Cluj-Napoca, 400084, Romania
Batista De Carvalho, Luís A. E.; Molecular-Physical Chemistry RandD Unit, Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal
Beleites, Claudia; Chemometrix GmbH, Södeler Weg 19, Wölfersheim, 61200, Germany
Byrne, Hugh J.; FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
Chiadò, Alessandro; Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy
Chis, Mihaela; Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu 1, Cluj-Napoca, 400084, Romania
Chisanga, Malama; School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, United Kingdom
Daniel, Amuthachelvi; Radiation and Environmental Science Centre, FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
Dybas, Jakub; Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, ul. Gronostajowa 2, Krakow, 30-384, Poland
Eppe, Gauthier ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Falgayrac, Guillaume; Univ. Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI, Lille, F-59000, France
Faulds, Karen; Bionanotechnology Research Section, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, United Kingdom
Gebavi, Hrvoje; Centre of Excellence for Advanced Materials and Sensing Devices, Division of Materials Physics, Rudjer Boskovic Institute, Bijenicka c. 54, Zagreb, 10000, Croatia
Giorgis, Fabrizio; Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy
Goodacre, Royston; Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
Graham, Duncan; Bionanotechnology Research Section, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, United Kingdom
La Manna, Pietro; Institute on Polymers, Composites and Biomaterials, National Research Council of Italy, via Campi Flegrei, 34, Pozzuoli, Naples 80078, Italy
Laing, Stacey; Bionanotechnology Research Section, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, United Kingdom
Litti, Lucio; Nanostructures and Optics Laboratory, Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
Lyng, Fiona M.; Radiation and Environmental Science Centre, FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
Malek, Kamilla; Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, ul. Gronostajowa 2, Krakow, 30-384, Poland
Malherbe, Cédric ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Marques, Maria P. M.; Molecular-Physical Chemistry RandD Unit, Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal, Department of Life Sciences, University of Coimbra, Coimbra, 3000-456, Portugal
Meneghetti, Moreno; Nanostructures and Optics Laboratory, Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
Mitri, Elisa; Raman Spectroscopy Lab, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, Trieste, 34100, Italy
Mohaček-Grošev, Vlasta; Centre of Excellence for Advanced Materials and Sensing Devices, Division of Materials Physics, Rudjer Boskovic Institute, Bijenicka c. 54, Zagreb, 10000, Croatia
Morasso, Carlo; Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
Muhamadali, Howbeer; Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
Musto, Pellegrino; Institute on Polymers, Composites and Biomaterials, National Research Council of Italy, via Campi Flegrei, 34, Pozzuoli, Naples 80078, Italy
Novara, Chiara; Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy
Pannico, Marianna; Institute on Polymers, Composites and Biomaterials, National Research Council of Italy, via Campi Flegrei, 34, Pozzuoli, Naples 80078, Italy
Penel, Guillaume; Univ. Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI, Lille, F-59000, France
Piot, Olivier; Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, Reims, 51097, France
Rindzevicius, Toas; Technical University of Denmark, Department of Health Technology, Ørsteds Plads, Building 345C, Kgs. Lyngby, DK-2800, Denmark
Rusu, Elena A.; Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu 1, Cluj-Napoca, 400084, Romania
Sergo, Valter; Raman Spectroscopy Lab, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, Trieste, 34100, Italy, Faculty of Health Sciences, University of Macau, Macau
Sockalingum, Ganesh; Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, Reims, 51097, France
Untereiner, Valérie; Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, Reims, 51097, France
Vanna, Renzo; Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
Wiercigroch, Ewelina; Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, ul. Gronostajowa 2, Krakow, 30-384, Poland
Bonifacio, Alois; Raman Spectroscopy Lab, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, Trieste, 34100, Italy
Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguie, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G.; Choo, J.; Cialla-May, D.; Deckert, V.; Fabris, L.; Faulds, K.; Garcia de Abajo, F. J.; Goodacre, R.; Graham, D.; Haes, A. J.; Haynes, C. L.; Huck, C.; Itoh, T.; Kall, M.; Kneipp, J.; Kotov, N. A.; Kuang, H.; Le Ru, E. C.; Lee, H. K.; Li, J.-F.; Ling, X. Y.; Maier, S. A.; Mayerhofer, T.; Moskovits, M.; Murakoshi, K.; Nam, J.-M.; Nie, S.; Ozaki, Y.; Pastoriza-Santos, I.; Perez-Juste, J.; Popp, J.; Pucci, A.; Reich, S.; Ren, B.; Schatz, G. C.; Shegai, T.; Schlucker, S.; Tay, L.-L.; Thomas, K. G.; Tian, Z.-Q.; Van Duyne, R. P.; Vo-Dinh, T.; Wang, Y.; Willets, K. A.; Xu, C.; Xu, H.; Xu, Y.; Yamamoto, Y. S.; Zhao, B.; Liz-Marzan, L. M. Present and Future of Surface Enhanced Raman Scattering. ACS Nano 2020, 14, 28, 10.1021/acsnano.9b04224
Graham, D.; Goodacre, R.; Arnolds, H.; Masson, J. F.; Schatz, G.; Baumberg, J.; Kim, D. H.; Aizpurua, J.; Lum, W.; Silvestri, A.; de Nijs, B.; Xu, Y.; Di Martino, G.; Natan, M.; Schlucker, S.; Wuytens, P.; Bruzas, I.; Kuttner, C.; Hardy, M.; Chikkaraddy, R.; Martin Sabanes, N.; Delfino, I.; Dawson, P.; Gawinkowski, S.; Bontempi, N.; Mahajan, S.; Reich, S.; Hourahine, B.; Bell, S.; Krolikowska, A.; Porter, M.; Keeler, A.; Kamp, M.; Fountain, A.; Fasolato, C.; Giorgis, F.; Otero, J. C.; Matricardi, C.; Van Duyne, R.; Lombardi, J.; Deckert, V.; Velleman, L. Theory of SERS enhancement: general discussion. Faraday Discuss. 2017, 205, 173-211, 10.1039/C7FD90095C
Sackmann, M.; Materny, A. Surface enhanced Raman scattering (SERS)-a quantitative analytical tool?. J. Raman Spectrosc. 2006, 37, 305-310, 10.1002/jrs.1443
Bell, S. E. J.; Stewart, A. In Surface Enhanced Raman Spectroscopy; Schlücker, S., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA, 2010; pp 71-86.
Aitchison, H.; Aizpurua, J.; Arnolds, H.; Baumberg, J.; Bell, S.; Bonifacio, A.; Chikkaraddy, R.; Dawson, P.; de Nijs, B.; Deckert, V.; Delfino, I.; Di Martino, G.; Eremina, O.; Faulds, K.; Fountain, A.; Gawinkowski, S.; Gomez Castano, M.; Goodacre, R.; Gracie, J.; Graham, D.; Guicheteau, J.; Hardwick, L.; Hardy, M.; Heck, C.; Jamieson, L.; Kamp, M.; Keeler, A.; Kuttner, C.; Langer, J.; Mahajan, S.; Martin Sabanes, N.; Murakoshi, K.; Porter, M.; Schatz, G.; Schlucker, S.; Tian, Z.; Tripathi, A.; Van Duyne, R.; Vikesland, P. Analytical SERS: general discussion. Faraday Discuss. 2017, 205, 561-600, 10.1039/C7FD90096A
Schlucker, S.; Bell, S.; Charron, G.; Cortes, E.; Kneipp, J.; Lamy de la Chapelle, M.; Langer, J.; Prochazka, M.; Tran, V. Towards Reliable and Quantitative SERS: from Key Parameters to Good Analytical Practice. Angew. Chem. 2019, 10.1002/ange.201908154.
Goodacre, R.; Graham, D.; Faulds, K. Recent developments in quantitative SERS: Moving towards absolute quantification. TrAC, Trends Anal. Chem. 2018, 102, 359-368, 10.1016/j.trac.2018.03.005
Novara, C.; Dalla Marta, S.; Virga, A.; Lamberti, A.; Angelini, A.; Chiadò, A.; Rivolo, P.; Geobaldo, F.; Sergo, V.; Bonifacio, A.; Giorgis, F. SERS-Active Ag Nanoparticles on Porous Silicon and PDMS Substrates: A Comparative Study of Uniformity and Raman Efficiency. J. Phys. Chem. C 2016, 120, 16946-16953, 10.1021/acs.jpcc.6b03852
Fisk, H.; Westley, C.; Turner, N. J.; Goodacre, R. Achieving optimal SERS through enhanced experimental design. J. Raman Spectrosc. 2016, 47, 59-66, 10.1002/jrs.4855
Guicheteau, J. A.; Farrell, M. E.; Christesen, S. D.; Fountain, A. W.; Pellegrino, P. M.; Emmons, E. D.; Tripathi, A.; Wilcox, P.; Emge, D. Surface-Enhanced Raman Scattering (SERS) Evaluation Protocol for Nanometallic Surfaces. Appl. Spectrosc. 2013, 67, 396-403, 10.1366/12-06846
Muehlethaler, C.; Leona, M.; Lombardi, J. R. Towards a validation of surface-enhanced Raman scattering (SERS) for use in forensic science: repeatability and reproducibility experiments. Forensic Sci. Int. 2016, 268, 1-13, 10.1016/j.forsciint.2016.09.005
Novara, C.; Chiadò, A.; Paccotti, N.; Catuogno, S.; Esposito, C. L.; Condorelli, G.; De Franciscis, V.; Geobaldo, F.; Rivolo, P.; Giorgis, F. SERS-active metal-dielectric nanostructures integrated in microfluidic devices for label-free quantitative detection of miRNA. Faraday Discuss. 2017, 205, 271-289, 10.1039/C7FD00140A
Yuen, C.; Zheng, W.; Huang, Z. Low-level detection of anti-cancer drug in blood plasma using microwave-treated gold-polystyrene beads as surface-enhanced Raman scattering substrates. Biosens. Bioelectron. 2010, 26, 580-584, 10.1016/j.bios.2010.07.030
Andreou, C.; Hoonejani, M. R.; Barmi, M. R.; Moskovits, M.; Meinhart, C. D. Rapid Detection of Drugs of Abuse in Saliva Using Surface Enhanced Raman Spectroscopy and Microfluidics. ACS Nano 2013, 7, 7157-7164, 10.1021/nn402563f
Fornasaro, S.; Bonifacio, A.; Marangon, E.; Buzzo, M.; Toffoli, G.; Rindzevicius, T.; Schmidt, M. S.; Sergo, V. Label-Free Quantification of Anticancer Drug Imatinib in Human Plasma with Surface Enhanced Raman Spectroscopy. Anal. Chem. 2018, 90, 12670, 10.1021/acs.analchem.8b02901
Fornasaro, S.; Marta, S. D.; Rabusin, M.; Bonifacio, A.; Sergo, V. Toward SERS-based point-of-care approaches for therapeutic drug monitoring: the case of methotrexate. Faraday Discuss. 2016, 187, 485, 10.1039/C5FD00173K
Panikar, S. S.; Ramirez-Garcia, G.; Sidhik, S.; Lopez-Luke, T.; Rodriguez-Gonzalez, C.; Ciapara, I. H.; Castillo, P. S.; Camacho-Villegas, T.; De la Rosa, E. Ultrasensitive SERS Substrate for Label-Free Therapeutic-Drug Monitoring of Paclitaxel and Cyclophosphamide in Blood Serum. Anal. Chem. 2019, 91, 2100-2111, 10.1021/acs.analchem.8b04523
Turzhitsky, V.; Zhang, L.; Horowitz, G. L.; Vitkin, E.; Khan, U.; Zakharov, Y.; Qiu, L.; Itzkan, I.; Perelman, L. T. Picoanalysis of Drugs in Biofluids with Quantitative Label-Free Surface-Enhanced Raman Spectroscopy. Small 2018, 14, 1802392, 10.1002/smll.201802392
Litti, L.; Ramundo, A.; Biscaglia, F.; Toffoli, G.; Gobbo, M.; Meneghetti, M. A surface enhanced Raman scattering based colloid nanosensor for developing therapeutic drug monitoring. J. Colloid Interface Sci. 2019, 533, 621-626, 10.1016/j.jcis.2018.08.107
Muhamadali, H.; Watt, A.; Xu, Y.; Chisanga, M.; Subaihi, A.; Jones, C.; Ellis, D. I.; Sutcliffe, O. B.; Goodacre, R. Rapid Detection and Quantification of Novel Psychoactive Substances (NPS) Using Raman Spectroscopy and Surface-Enhanced Raman Scattering. Front. Chem. 2019, 7, 412, 10.3389/fchem.2019.00412
Shende, C.; Farquharson, A.; Brouillette, C.; Smith, W.; Farquharson, S. Quantitative Measurements of Codeine and Fentanyl on a Surface-Enhanced Raman-Active Pad Test. Molecules 2019, 24, 2578, 10.3390/molecules24142578
Sivashanmugan, K.; Squire, K.; Tan, A.; Zhao, Y.; Kraai, J. A.; Rorrer, G. L.; Wang, A. X. Trace Detection of Tetrahydrocannabinol in Body Fluid via Surface-Enhanced Raman Scattering and Principal Component Analysis. ACS Sens 2019, 4, 1109-1117, 10.1021/acssensors.9b00476
Lee, K.-M.; Herrman, T. J.; Bisrat, Y.; Murray, S. C. Feasibility of Surface-Enhanced Raman Spectroscopy for Rapid Detection of Aflatoxins in Maize. J. Agric. Food Chem. 2014, 62, 4466-4474, 10.1021/jf500854u
Yaseen, T.; Pu, H.; Sun, D.-W. Fabrication of Silver-coated Gold Nanoparticles to Simultaneously Detect Multi-class Insecticide Residues in Peach with SERS Technique. Talanta 2019, 196, 537, 10.1016/j.talanta.2018.12.030
Hassan, M. M.; Li, H.; Ahmad, W.; Zareef, M.; Wang, J.; Xie, S.; Wang, P.; Ouyang, Q.; Wang, S.; Chen, Q. Au@Ag nanostructure based SERS substrate for simultaneous determination of pesticides residue in tea via solid phase extraction coupled multivariate calibration. LWT 2019, 105, 290-297, 10.1016/j.lwt.2019.02.016
Jaworska, A.; Fornasaro, S.; Sergo, V.; Bonifacio, A. Potential of Surface Enhanced Raman Spectroscopy (SERS) in Therapeutic Drug Monitoring (TDM). A Critical Review. Biosensors 2016, 6, 47, 10.3390/bios6030047
Ricci, M.; Trombetta, E.; Castellucci, E.; Becucci, M. On the SERS quantitative determination of organic dyes. J. Raman Spectrosc. 2018, 49, 997-1005, 10.1002/jrs.5335
McLaughlin, C.; MacMillan, D.; McCardle, C.; Smith, W. E. Quantitative analysis of mitoxantrone by surface-enhanced resonance Raman scattering. Anal. Chem. 2002, 74, 3160-3167, 10.1021/ac010067k
Ellison, S. L. R.; Williams, A. Eurachem/CITAC guide: Quantifying Uncertainty in Analytical Measurement, 3rd ed.; Eurachem, 2012.
Vander Heyden, Y.; Smeyers-Verbeke, J. Set-up and evaluation of interlaboratory studies. Journal of Chromatography A 2007, 1158, 158-167, 10.1016/j.chroma.2007.02.053
Hund, E.; Massart, D. L.; Smeyers-Verbeke, J. Inter-laboratory studies in analytical chemistry. Anal. Chim. Acta 2000, 423, 145-165, 10.1016/S0003-2670(00)01115-6
Szewczak, E.; Bondarzewski, A. Is the assessment of interlaboratory comparison results for a small number of tests and limited number of participants reliable and rational?. Accredit. Qual. Assur. 2016, 21, 91-100, 10.1007/s00769-016-1195-y
Krafft, C.; Popp, J. Raman4Clinics: the prospects of Raman-based methods for clinical application. Anal. Bioanal. Chem. 2015, 407, 8263-8264, 10.1007/s00216-015-8962-1
Alvarez-Puebla, R. A. Effects of the Excitation Wavelength on the SERS Spectrum. J. Phys. Chem. Lett. 2012, 3, 857-866, 10.1021/jz201625j
Amendola, V.; Meneghetti, M. Controlled size manipulation of free gold nanoparticles by laser irradiation and their facile bioconjugation. J. Mater. Chem. 2007, 17, 4705, 10.1039/b709621f
Schmidt, M. S.; Hübner, J.; Boisen, A. Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy. Adv. Mater. 2012, 24, OP11-OP18, 10.1002/adma.201103496
Beleites, C.; Sergo, V. hyperSpec: a package to handle hyperspectral data sets in R, R package version 0.99-20180627, 2018.
Wickham, H.; François, R.; Henry, L.; Mueller, K. dplyr: A Grammar of Data Manipulation, R package version 0.8.3, 2019.
ISO 572511:1994. Accuracy (trueness and precision) of measurement methods and results-Part 1: General principles and definitions; International Organization for Standardization, 1994.
Westgard, J. O.; Carey, R. N.; Wold, S. Criteria for judging precision and accuracy in method development and evaluation. Clin. Chem. 1974, 20, 825-833, 10.1093/clinchem/20.7.825
Næs, T.; Isaksson, T.; Fearn, T.; Davies, T. A User-Friendly Guide to Multivariate Calibration and Classification, 2 nd ed.; IM Publications: Chichester, UK, 2017.
Hubert, P.; Nguyen-Huu, J. J.; Boulanger, B.; Chapuzet, E.; Chiap, P.; Cohen, N.; Compagnon, P. A.; Dewe, W.; Feinberg, M.; Lallier, M.; Laurentie, M.; Mercier, N.; Muzard, G.; Nivet, C.; Valat, L.; Rozet, E. Harmonization of strategies for the validation of quantitative analytical procedures. A SFSTP proposal - part II. J. Pharm. Biomed. Anal. 2007, 45, 70-81, 10.1016/j.jpba.2007.06.013
Horwitz, W. Protocol for the design, conduct and interpretation of method-performance studies: Revised 1994 (Technical Report). Pure Appl. Chem. 1995, 67, 331-343, 10.1351/pac199567020331
Martens, H.; Næs, T. Multivariate calibration; Wiley, 1989.
AACC International Approved Methods of Analysis. Method 39-00.01 Near-Infrared Methods - Guidelines for Model Development and Maintenance; American Association for Clinical Chemistry, 2009.