Fornasaro, Stefano; Raman Spectroscopy Lab, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, Trieste, 34100, Italy
Alsamad, Fatima; Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, Reims, 51097, France
Baia, Monica; Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu 1, Cluj-Napoca, 400084, Romania
Batista De Carvalho, Luís A. E.; Molecular-Physical Chemistry RandD Unit, Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal
Beleites, Claudia; Chemometrix GmbH, Södeler Weg 19, Wölfersheim, 61200, Germany
Byrne, Hugh J.; FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
Chiadò, Alessandro; Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy
Chis, Mihaela; Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu 1, Cluj-Napoca, 400084, Romania
Chisanga, Malama; School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, United Kingdom
Daniel, Amuthachelvi; Radiation and Environmental Science Centre, FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
Dybas, Jakub; Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, ul. Gronostajowa 2, Krakow, 30-384, Poland
Eppe, Gauthier ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Falgayrac, Guillaume; Univ. Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI, Lille, F-59000, France
Faulds, Karen; Bionanotechnology Research Section, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, United Kingdom
Gebavi, Hrvoje; Centre of Excellence for Advanced Materials and Sensing Devices, Division of Materials Physics, Rudjer Boskovic Institute, Bijenicka c. 54, Zagreb, 10000, Croatia
Giorgis, Fabrizio; Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy
Goodacre, Royston; Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
Graham, Duncan; Bionanotechnology Research Section, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, United Kingdom
La Manna, Pietro; Institute on Polymers, Composites and Biomaterials, National Research Council of Italy, via Campi Flegrei, 34, Pozzuoli, Naples 80078, Italy
Laing, Stacey; Bionanotechnology Research Section, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, United Kingdom
Litti, Lucio; Nanostructures and Optics Laboratory, Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
Lyng, Fiona M.; Radiation and Environmental Science Centre, FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
Malek, Kamilla; Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, ul. Gronostajowa 2, Krakow, 30-384, Poland
Malherbe, Cédric ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Marques, Maria P. M.; Molecular-Physical Chemistry RandD Unit, Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal, Department of Life Sciences, University of Coimbra, Coimbra, 3000-456, Portugal
Meneghetti, Moreno; Nanostructures and Optics Laboratory, Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
Mitri, Elisa; Raman Spectroscopy Lab, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, Trieste, 34100, Italy
Mohaček-Grošev, Vlasta; Centre of Excellence for Advanced Materials and Sensing Devices, Division of Materials Physics, Rudjer Boskovic Institute, Bijenicka c. 54, Zagreb, 10000, Croatia
Morasso, Carlo; Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
Muhamadali, Howbeer; Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
Musto, Pellegrino; Institute on Polymers, Composites and Biomaterials, National Research Council of Italy, via Campi Flegrei, 34, Pozzuoli, Naples 80078, Italy
Novara, Chiara; Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy
Pannico, Marianna; Institute on Polymers, Composites and Biomaterials, National Research Council of Italy, via Campi Flegrei, 34, Pozzuoli, Naples 80078, Italy
Penel, Guillaume; Univ. Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI, Lille, F-59000, France
Piot, Olivier; Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, Reims, 51097, France
Rindzevicius, Toas; Technical University of Denmark, Department of Health Technology, Ørsteds Plads, Building 345C, Kgs. Lyngby, DK-2800, Denmark
Rusu, Elena A.; Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu 1, Cluj-Napoca, 400084, Romania
Sergo, Valter; Raman Spectroscopy Lab, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, Trieste, 34100, Italy, Faculty of Health Sciences, University of Macau, Macau
Sockalingum, Ganesh; Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, Reims, 51097, France
Untereiner, Valérie; Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, Reims, 51097, France
Vanna, Renzo; Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
Wiercigroch, Ewelina; Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, ul. Gronostajowa 2, Krakow, 30-384, Poland
Bonifacio, Alois; Raman Spectroscopy Lab, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, Trieste, 34100, Italy
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguie, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G.; Choo, J.; Cialla-May, D.; Deckert, V.; Fabris, L.; Faulds, K.; Garcia de Abajo, F. J.; Goodacre, R.; Graham, D.; Haes, A. J.; Haynes, C. L.; Huck, C.; Itoh, T.; Kall, M.; Kneipp, J.; Kotov, N. A.; Kuang, H.; Le Ru, E. C.; Lee, H. K.; Li, J.-F.; Ling, X. Y.; Maier, S. A.; Mayerhofer, T.; Moskovits, M.; Murakoshi, K.; Nam, J.-M.; Nie, S.; Ozaki, Y.; Pastoriza-Santos, I.; Perez-Juste, J.; Popp, J.; Pucci, A.; Reich, S.; Ren, B.; Schatz, G. C.; Shegai, T.; Schlucker, S.; Tay, L.-L.; Thomas, K. G.; Tian, Z.-Q.; Van Duyne, R. P.; Vo-Dinh, T.; Wang, Y.; Willets, K. A.; Xu, C.; Xu, H.; Xu, Y.; Yamamoto, Y. S.; Zhao, B.; Liz-Marzan, L. M. Present and Future of Surface Enhanced Raman Scattering. ACS Nano 2020, 14, 28, 10.1021/acsnano.9b04224
Graham, D.; Goodacre, R.; Arnolds, H.; Masson, J. F.; Schatz, G.; Baumberg, J.; Kim, D. H.; Aizpurua, J.; Lum, W.; Silvestri, A.; de Nijs, B.; Xu, Y.; Di Martino, G.; Natan, M.; Schlucker, S.; Wuytens, P.; Bruzas, I.; Kuttner, C.; Hardy, M.; Chikkaraddy, R.; Martin Sabanes, N.; Delfino, I.; Dawson, P.; Gawinkowski, S.; Bontempi, N.; Mahajan, S.; Reich, S.; Hourahine, B.; Bell, S.; Krolikowska, A.; Porter, M.; Keeler, A.; Kamp, M.; Fountain, A.; Fasolato, C.; Giorgis, F.; Otero, J. C.; Matricardi, C.; Van Duyne, R.; Lombardi, J.; Deckert, V.; Velleman, L. Theory of SERS enhancement: general discussion. Faraday Discuss. 2017, 205, 173-211, 10.1039/C7FD90095C
Sackmann, M.; Materny, A. Surface enhanced Raman scattering (SERS)-a quantitative analytical tool?. J. Raman Spectrosc. 2006, 37, 305-310, 10.1002/jrs.1443
Bell, S. E. J.; Stewart, A. In Surface Enhanced Raman Spectroscopy; Schlücker, S., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA, 2010; pp 71-86.
Aitchison, H.; Aizpurua, J.; Arnolds, H.; Baumberg, J.; Bell, S.; Bonifacio, A.; Chikkaraddy, R.; Dawson, P.; de Nijs, B.; Deckert, V.; Delfino, I.; Di Martino, G.; Eremina, O.; Faulds, K.; Fountain, A.; Gawinkowski, S.; Gomez Castano, M.; Goodacre, R.; Gracie, J.; Graham, D.; Guicheteau, J.; Hardwick, L.; Hardy, M.; Heck, C.; Jamieson, L.; Kamp, M.; Keeler, A.; Kuttner, C.; Langer, J.; Mahajan, S.; Martin Sabanes, N.; Murakoshi, K.; Porter, M.; Schatz, G.; Schlucker, S.; Tian, Z.; Tripathi, A.; Van Duyne, R.; Vikesland, P. Analytical SERS: general discussion. Faraday Discuss. 2017, 205, 561-600, 10.1039/C7FD90096A
Schlucker, S.; Bell, S.; Charron, G.; Cortes, E.; Kneipp, J.; Lamy de la Chapelle, M.; Langer, J.; Prochazka, M.; Tran, V. Towards Reliable and Quantitative SERS: from Key Parameters to Good Analytical Practice. Angew. Chem. 2019, 10.1002/ange.201908154.
Goodacre, R.; Graham, D.; Faulds, K. Recent developments in quantitative SERS: Moving towards absolute quantification. TrAC, Trends Anal. Chem. 2018, 102, 359-368, 10.1016/j.trac.2018.03.005
Novara, C.; Dalla Marta, S.; Virga, A.; Lamberti, A.; Angelini, A.; Chiadò, A.; Rivolo, P.; Geobaldo, F.; Sergo, V.; Bonifacio, A.; Giorgis, F. SERS-Active Ag Nanoparticles on Porous Silicon and PDMS Substrates: A Comparative Study of Uniformity and Raman Efficiency. J. Phys. Chem. C 2016, 120, 16946-16953, 10.1021/acs.jpcc.6b03852
Fisk, H.; Westley, C.; Turner, N. J.; Goodacre, R. Achieving optimal SERS through enhanced experimental design. J. Raman Spectrosc. 2016, 47, 59-66, 10.1002/jrs.4855
Guicheteau, J. A.; Farrell, M. E.; Christesen, S. D.; Fountain, A. W.; Pellegrino, P. M.; Emmons, E. D.; Tripathi, A.; Wilcox, P.; Emge, D. Surface-Enhanced Raman Scattering (SERS) Evaluation Protocol for Nanometallic Surfaces. Appl. Spectrosc. 2013, 67, 396-403, 10.1366/12-06846
Muehlethaler, C.; Leona, M.; Lombardi, J. R. Towards a validation of surface-enhanced Raman scattering (SERS) for use in forensic science: repeatability and reproducibility experiments. Forensic Sci. Int. 2016, 268, 1-13, 10.1016/j.forsciint.2016.09.005
Novara, C.; Chiadò, A.; Paccotti, N.; Catuogno, S.; Esposito, C. L.; Condorelli, G.; De Franciscis, V.; Geobaldo, F.; Rivolo, P.; Giorgis, F. SERS-active metal-dielectric nanostructures integrated in microfluidic devices for label-free quantitative detection of miRNA. Faraday Discuss. 2017, 205, 271-289, 10.1039/C7FD00140A
Yuen, C.; Zheng, W.; Huang, Z. Low-level detection of anti-cancer drug in blood plasma using microwave-treated gold-polystyrene beads as surface-enhanced Raman scattering substrates. Biosens. Bioelectron. 2010, 26, 580-584, 10.1016/j.bios.2010.07.030
Andreou, C.; Hoonejani, M. R.; Barmi, M. R.; Moskovits, M.; Meinhart, C. D. Rapid Detection of Drugs of Abuse in Saliva Using Surface Enhanced Raman Spectroscopy and Microfluidics. ACS Nano 2013, 7, 7157-7164, 10.1021/nn402563f
Fornasaro, S.; Bonifacio, A.; Marangon, E.; Buzzo, M.; Toffoli, G.; Rindzevicius, T.; Schmidt, M. S.; Sergo, V. Label-Free Quantification of Anticancer Drug Imatinib in Human Plasma with Surface Enhanced Raman Spectroscopy. Anal. Chem. 2018, 90, 12670, 10.1021/acs.analchem.8b02901
Fornasaro, S.; Marta, S. D.; Rabusin, M.; Bonifacio, A.; Sergo, V. Toward SERS-based point-of-care approaches for therapeutic drug monitoring: the case of methotrexate. Faraday Discuss. 2016, 187, 485, 10.1039/C5FD00173K
Panikar, S. S.; Ramirez-Garcia, G.; Sidhik, S.; Lopez-Luke, T.; Rodriguez-Gonzalez, C.; Ciapara, I. H.; Castillo, P. S.; Camacho-Villegas, T.; De la Rosa, E. Ultrasensitive SERS Substrate for Label-Free Therapeutic-Drug Monitoring of Paclitaxel and Cyclophosphamide in Blood Serum. Anal. Chem. 2019, 91, 2100-2111, 10.1021/acs.analchem.8b04523
Turzhitsky, V.; Zhang, L.; Horowitz, G. L.; Vitkin, E.; Khan, U.; Zakharov, Y.; Qiu, L.; Itzkan, I.; Perelman, L. T. Picoanalysis of Drugs in Biofluids with Quantitative Label-Free Surface-Enhanced Raman Spectroscopy. Small 2018, 14, 1802392, 10.1002/smll.201802392
Litti, L.; Ramundo, A.; Biscaglia, F.; Toffoli, G.; Gobbo, M.; Meneghetti, M. A surface enhanced Raman scattering based colloid nanosensor for developing therapeutic drug monitoring. J. Colloid Interface Sci. 2019, 533, 621-626, 10.1016/j.jcis.2018.08.107
Muhamadali, H.; Watt, A.; Xu, Y.; Chisanga, M.; Subaihi, A.; Jones, C.; Ellis, D. I.; Sutcliffe, O. B.; Goodacre, R. Rapid Detection and Quantification of Novel Psychoactive Substances (NPS) Using Raman Spectroscopy and Surface-Enhanced Raman Scattering. Front. Chem. 2019, 7, 412, 10.3389/fchem.2019.00412
Shende, C.; Farquharson, A.; Brouillette, C.; Smith, W.; Farquharson, S. Quantitative Measurements of Codeine and Fentanyl on a Surface-Enhanced Raman-Active Pad Test. Molecules 2019, 24, 2578, 10.3390/molecules24142578
Sivashanmugan, K.; Squire, K.; Tan, A.; Zhao, Y.; Kraai, J. A.; Rorrer, G. L.; Wang, A. X. Trace Detection of Tetrahydrocannabinol in Body Fluid via Surface-Enhanced Raman Scattering and Principal Component Analysis. ACS Sens 2019, 4, 1109-1117, 10.1021/acssensors.9b00476
Lee, K.-M.; Herrman, T. J.; Bisrat, Y.; Murray, S. C. Feasibility of Surface-Enhanced Raman Spectroscopy for Rapid Detection of Aflatoxins in Maize. J. Agric. Food Chem. 2014, 62, 4466-4474, 10.1021/jf500854u
Yaseen, T.; Pu, H.; Sun, D.-W. Fabrication of Silver-coated Gold Nanoparticles to Simultaneously Detect Multi-class Insecticide Residues in Peach with SERS Technique. Talanta 2019, 196, 537, 10.1016/j.talanta.2018.12.030
Hassan, M. M.; Li, H.; Ahmad, W.; Zareef, M.; Wang, J.; Xie, S.; Wang, P.; Ouyang, Q.; Wang, S.; Chen, Q. Au@Ag nanostructure based SERS substrate for simultaneous determination of pesticides residue in tea via solid phase extraction coupled multivariate calibration. LWT 2019, 105, 290-297, 10.1016/j.lwt.2019.02.016
Jaworska, A.; Fornasaro, S.; Sergo, V.; Bonifacio, A. Potential of Surface Enhanced Raman Spectroscopy (SERS) in Therapeutic Drug Monitoring (TDM). A Critical Review. Biosensors 2016, 6, 47, 10.3390/bios6030047
Ricci, M.; Trombetta, E.; Castellucci, E.; Becucci, M. On the SERS quantitative determination of organic dyes. J. Raman Spectrosc. 2018, 49, 997-1005, 10.1002/jrs.5335
McLaughlin, C.; MacMillan, D.; McCardle, C.; Smith, W. E. Quantitative analysis of mitoxantrone by surface-enhanced resonance Raman scattering. Anal. Chem. 2002, 74, 3160-3167, 10.1021/ac010067k
Ellison, S. L. R.; Williams, A. Eurachem/CITAC guide: Quantifying Uncertainty in Analytical Measurement, 3rd ed.; Eurachem, 2012.
Vander Heyden, Y.; Smeyers-Verbeke, J. Set-up and evaluation of interlaboratory studies. Journal of Chromatography A 2007, 1158, 158-167, 10.1016/j.chroma.2007.02.053
Hund, E.; Massart, D. L.; Smeyers-Verbeke, J. Inter-laboratory studies in analytical chemistry. Anal. Chim. Acta 2000, 423, 145-165, 10.1016/S0003-2670(00)01115-6
Szewczak, E.; Bondarzewski, A. Is the assessment of interlaboratory comparison results for a small number of tests and limited number of participants reliable and rational?. Accredit. Qual. Assur. 2016, 21, 91-100, 10.1007/s00769-016-1195-y
Krafft, C.; Popp, J. Raman4Clinics: the prospects of Raman-based methods for clinical application. Anal. Bioanal. Chem. 2015, 407, 8263-8264, 10.1007/s00216-015-8962-1
Alvarez-Puebla, R. A. Effects of the Excitation Wavelength on the SERS Spectrum. J. Phys. Chem. Lett. 2012, 3, 857-866, 10.1021/jz201625j
Amendola, V.; Meneghetti, M. Controlled size manipulation of free gold nanoparticles by laser irradiation and their facile bioconjugation. J. Mater. Chem. 2007, 17, 4705, 10.1039/b709621f
Schmidt, M. S.; Hübner, J.; Boisen, A. Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy. Adv. Mater. 2012, 24, OP11-OP18, 10.1002/adma.201103496
Beleites, C.; Sergo, V. hyperSpec: a package to handle hyperspectral data sets in R, R package version 0.99-20180627, 2018.
Wickham, H.; François, R.; Henry, L.; Mueller, K. dplyr: A Grammar of Data Manipulation, R package version 0.8.3, 2019.
ISO 572511:1994. Accuracy (trueness and precision) of measurement methods and results-Part 1: General principles and definitions; International Organization for Standardization, 1994.
Westgard, J. O.; Carey, R. N.; Wold, S. Criteria for judging precision and accuracy in method development and evaluation. Clin. Chem. 1974, 20, 825-833, 10.1093/clinchem/20.7.825
Næs, T.; Isaksson, T.; Fearn, T.; Davies, T. A User-Friendly Guide to Multivariate Calibration and Classification, 2 nd ed.; IM Publications: Chichester, UK, 2017.
Hubert, P.; Nguyen-Huu, J. J.; Boulanger, B.; Chapuzet, E.; Chiap, P.; Cohen, N.; Compagnon, P. A.; Dewe, W.; Feinberg, M.; Lallier, M.; Laurentie, M.; Mercier, N.; Muzard, G.; Nivet, C.; Valat, L.; Rozet, E. Harmonization of strategies for the validation of quantitative analytical procedures. A SFSTP proposal - part II. J. Pharm. Biomed. Anal. 2007, 45, 70-81, 10.1016/j.jpba.2007.06.013
Horwitz, W. Protocol for the design, conduct and interpretation of method-performance studies: Revised 1994 (Technical Report). Pure Appl. Chem. 1995, 67, 331-343, 10.1351/pac199567020331
Martens, H.; Næs, T. Multivariate calibration; Wiley, 1989.
AACC International Approved Methods of Analysis. Method 39-00.01 Near-Infrared Methods - Guidelines for Model Development and Maintenance; American Association for Clinical Chemistry, 2009.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.