Unpublished conference/Abstract (Scientific congresses and symposiums)
Predictive Maintenance of Technical Faults in Aircraft
Peters, Florian; Aerts, Stéphanie; Schyns, Michael
202034th Annual Conference of the Belgian Operational Research Society
 

Files


Full Text
Orbel2020_Abstract.pdf
Author preprint (73.25 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
predictive maintenance; machine learning; operational research
Abstract :
[en] A key issue for handlers in the air cargo industry is arrival delays due to aircraft maintenance. This work focuses on a particular delay caused by technical faults called technical delays. Using real data from a cargo handler company, different classification models that can predict technical delay occurrence are compared. A new decision tree extension is also proposed based on a study by Hoffait & Schyns (2017). The final results present a good starting point for future research.
Disciplines :
Quantitative methods in economics & management
Author, co-author :
Peters, Florian ;  Université de Liège - ULiège > HEC Liège : UER > UER Opérations
Aerts, Stéphanie ;  Université de Liège - ULiège > HEC Liège : UER > UER Opérations
Schyns, Michael  ;  Université de Liège - ULiège > HEC Liège : UER > UER Opérations : Informatique de gestion
Language :
English
Title :
Predictive Maintenance of Technical Faults in Aircraft
Publication date :
30 January 2020
Event name :
34th Annual Conference of the Belgian Operational Research Society
Event place :
Lille, France
Event date :
from 30-01-2020 to 31-01-2020
Audience :
International
Available on ORBi :
since 17 February 2020

Statistics


Number of views
266 (27 by ULiège)
Number of downloads
170 (19 by ULiège)

Bibliography


Similar publications



Contact ORBi