Balemans, W., Ebeling, M., Patel, N., Van Hul, E., Olson, P., Dioszegi, M., et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet. 10:5 (2001), 537–543.
Kim, W., Kim, M., Jho, E., Wnt/β-catenin signalling: from plasma membrane to nucleus. Biochem. J. 450:1 (2013), 9–21.
Ke, H.Z., Richards, W.G., Li, X., Ominsky, M.S., Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr. Rev. 33:5 (2012), 747–783.
Baron, R., Kneissel, M., WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19:2 (2013), 179–192.
Joiner, D.M., Ke, J., Zhong, Z., Xu, H.E., Williams, B.O., LRP5 and LRP6 in development and disease. Trends Endocrinol. Metab. 24:1 (2013), 31–39.
Poole, K.E.S., van Bezooijen, R.L., Loveridge, N., Hamersma, H., Papapoulos, S.E., Löwik, C.W., et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. Fed. Am. Soc. Exp. Biol. 19:13 (2005), 1842–1844.
Dallas, S.L., Prideaux, M., Bonewald, L.F., The osteocyte: an endocrine cell and more. Endocr. Rev. 34:5 (2013), 658–690.
Robling, A.G., Niziolek, P.J., Baldridge, L.A., Condon, K.W., Allen, M.R., Alam, I., et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem. 283:9 (2008), 5866–5875.
Ominsky, M.S., Brown, D.L., Van, G., Cordover, D., Pacheco, E., Frazier, E., et al. Differential temporal effects of sclerostin antibody and parathyroid hormone on cancellous and cortical bone and quantitative differences in effects on the osteoblast lineage in young intact rats. Bone 81 (2015), 380–391.
Kamiya, N., Kobayashi, T., Mochida, Y., Yu, P.B., Yamauchi, M., Kronenberg, H.M., et al. Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J. Bone Miner. Res. 25:2 (2010), 200–210.
Glass, D.A., Bialek, P., Ahn, J.D., Starbuck, M., Patel, M.S., Clevers, H., et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 8:5 (2005), 751–764.
Sapir-Koren, R., Livshits, G., Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles?. Osteoporos Int. 25:12 (2014), 2685–2700.
Mödder, U.I., Hoey, K.A., Amin, S., McCready, L.K., Achenbach, S.J., Riggs, B.L., et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J. Bone Miner. Res. 26:2 (2011), 373–379.
Ardawi, M.-S.M., Al-Kadi, H.A., Rouzi, A.A., Qari, M.H., Determinants of serum sclerostin in healthy pre- and postmenopausal women. J. Bone Miner. Res. 26:12 (2011), 2812–2822.
Kramer, I., Loots, G.G., Studer, A., Keller, H., Kneissel, M., Parathyroid hormone (PTH)-induced bone gain is blunted in SOST overexpressing and deficient mice. J. Bone Miner. Res. 25:2 (2010), 178–189.
Ardawi, M.-S.M., Al-Sibiany, A.M., Bakhsh, T.M., Rouzi, A.A., Qari, M.H., Decreased serum sclerostin levels in patients with primary hyperparathyroidism: a cross-sectional and a longitudinal study. Osteoporos. Int. 23:6 (2012), 1789–1797.
He, W., Kang, Y.S., Dai, C., Liu, Y., Blockade of Wnt/β-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J. Am. Soc. Nephrol. 22:1 (2011), 90–103.
Ryan, Z.C., Ketha, H., McNulty, M.S., McGee-Lawrence, M., Craig, T.A., Grande, J.P., et al. Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc. Natl. Acad. Sci. USA 110:15 (2013), 6199–6204.
de Oliveira, R.A., Barreto, F.C., Mendes, M., dos Reis, L.M., Castro, J.H., Britto, Z.M.L., et al. Peritoneal dialysis per se is a risk factor for sclerostin-associated adynamic bone disease. Kidney Int. 87:5 (2015), 1039–1045.
Fujita, K., Roforth, M.M., Demaray, S., McGregor, U., Kirmani, S., McCready, L.K., et al. Effects of estrogen on bone mRNA levels of sclerostin and other genes relevant to bone metabolism in postmenopausal women. J. Clin. Endocrinol. Metab. 99:1 (2014), E81–E88.
Wan, M., Yang, C., Li, J., Wu, X., Yuan, H., Ma, H., et al. Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes Dev. 22:21 (2008), 2968–2979.
Moe, S.M., Chen, N.X., Newman, C.L., Organ, J.M., Kneissel, M., Kramer, I., et al. Anti-sclerostin antibody treatment in a rat model of progressive renal osteodystrophy. J Bone Miner Res. 30:3 (2015), 499–509.
Brandenburg, V.M., Floege, J., Adynamic bone disease-bone and beyond. NDT Plus. 1:3 (2008), 135–147.
Keller, H., Kneissel, M., SOST is a target gene for PTH in bone. Bone 37:2 (2005), 148–158.
Ferreira, J.C., Ferrari, G.O., Neves, K.R., Cavallari, R.T., Dominguez, W.V., Dos Reis, L.M., et al. Effects of dietary phosphate on adynamic bone disease in rats with chronic kidney disease–role of sclerostin?. PloS One, 8(11), 2013.
Zhou, X., Cui, Y., Zhou, X., Han, J., Phosphate/pyrophosphate and MV-related proteins in mineralisation: discoveries from mouse models. Int. J. Biol. Sci. 8:6 (2012), 778–790.
Pelletier, S., Dubourg, L., Carlier, M.-C., Hadj-Aissa, A., Fouque, D., The relation between renal function and serum sclerostin in adult patients with CKD. Clin. J. Am. Soc. Nephrol. 8:5 (2013), 819–823.
Ito, N., Findlay, D.M., Anderson, P.H., Bonewald, L.F., Atkins, G.J., Extracellular phosphate modulates the effect of 1α,25-dihydroxy vitamin D3 (1,25D) on osteocyte like cells. J. Steroid. Biochem. Mol. Biol. 136 (2013), 183–186.
Sutherland, M.K., Geoghegan, J.C., Yu, C., Winkler, D.G., Latham, J.A., Unique regulation of SOST, the sclerosteosis gene, by BMPs and steroid hormones in human osteoblasts. Bone 35:2 (2004), 448–454.
Evenepoel, P., Claes, K., Cavalier, E., Meijers, B., Stenvinkel, P., Behets, G., et al. A distinct bone phenotype in ADPKD patients with end-stage renal disease. Kidney Int. 95:2 (2019), 412–419.
Kim, B.-J., Bae, S.J., Lee, S.-Y., Lee, Y.-S., Baek, J.-E., Park, S.-Y., et al. TNF-α mediates the stimulation of sclerostin expression in an estrogen-deficient condition. Biochem. Biophys. Res. Commun. 424:1 (2012), 170–175.
Jin, T., The WNT signalling pathway and diabetes mellitus. Diabetologia 51:10 (2008), 1771–1780.
Morales-Santana, S., García-Fontana, B., García-Martín, A., Rozas-Moreno, P., García-Salcedo, J.A., Reyes-García, R., et al. Atherosclerotic disease in type 2 diabetes is associated with an increase in sclerostin levels. Diabetes Care 36:6 (2013), 1667–1674.
Van Hul, W., Balemans, W., Van Hul, E., Dikkers, F.G., Obee, H., Stokroos, R.J., et al. Van Buchem disease (hyperostosis corticalis generalisata) maps to chromosome 17q12-q21. Am. J. Hum. Genet. 62:2 (1998), 391–399.
McClung, M.R., Grauer, A., Boonen, S., Bolognese, M.A., Brown, J.P., Diez-Perez, A., et al. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 370:5 (2014), 412–420.
Cosman, F., Crittenden, D.B., Adachi, J.D., Binkley, N., Czerwinski, E., Ferrari, S., et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 375:16 (2016), 1532–1543.
Saag, K.G., Petersen, J., Brandi, M.L., Karaplis, A.C., Lorentzon, M., Thomas, T., et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med. 377:15 (2017), 1417–1427.
Garnero, P., Sornay-Rendu, E., Munoz, F., Borel, O., Chapurlat, R.D., Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporos. Int. 24:2 (2013), 489–494.
Arasu, A., Cawthon, P.M., Lui, L.-Y., Do, T.P., Arora, P.S., Cauley, J.A., et al. Serum sclerostin and risk of hip fracture in older Caucasian women. J. Clin. Endocrinol. Metab. 97:6 (2012), 2027–2032.
Sheng, Z., Tong, D., Ou, Y., Zhang, H., Zhang, Z., Li, S., et al. Serum sclerostin levels were positively correlated with fat mass and bone mineral density in central south Chinese postmenopausal women. Clin. Endocrinol. (Oxf). 76:6 (2012), 797–801.
Amrein, K., Amrein, S., Drexler, C., Dimai, H.P., Dobnig, H., Pfeifer, K., et al. Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults. J. Clin. Endocrinol. Metab. 97:1 (2012), 148–154.
Szulc, P., Boutroy, S., Vilayphiou, N., Schoppet, M., Rauner, M., Chapurlat, R., et al. Correlates of bone microarchitectural parameters and serum sclerostin levels in men: the STRAMBO study. J. Bone Miner. Res. 28:8 (2013), 1760–1770.
Ardawi, M.-S.M., Rouzi, A.A., Al-Sibiani, S.A., Al-Senani, N.S., Qari, M.H., Mousa, S.A., High serum sclerostin predicts the occurrence of osteoporotic fractures in postmenopausal women: the Center of Excellence for Osteoporosis Research Study. J. Am. Soc. Bone Miner. Res. 27:12 (2012 Dec), 2592–2602.
Evenepoel, P., D'Haese, P., Brandenburg, V., Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int. 88:2 (2015), 235–240.
Lips, L., de Roij, van Zuijdewijn, C.L.M., Ter Wee, P.M., Bots, M.L., Blankestijn, P.J., van den Dorpel, M.A., Serum sclerostin: relation with mortality and impact of hemodiafiltration. Nephrol. Dial Transplant. 32:7 (2017), 1217–1223.
Ketteler, M., Block, G.A., Evenepoel, P., Fukagawa, M., Herzog, C.A., McCann, L., et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: what's changed and why it matters. Kidney Int. 92:1 (2017), 26–36.
Sabbagh, Y., Graciolli, F.G., O'Brien, S., Tang, W., dos Reis, L.M., Ryan, S., et al. Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy. J. Bone Miner. Res. 27:8 (2012), 1757–1772.
Cejka, D., Herberth, J., Branscum, A.J., Fardo, D.W., Monier-Faugere, M.-C., Diarra, D., et al. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin. J. Am. Soc. Nephrol. 6:4 (2011), 877–882.
Viaene, L., Behets, G.J., Claes, K., Meijers, B., Blocki, F., Brandenburg, V., et al. Sclerostin: another bone-related protein related to all-cause mortality in haemodialysis?. Nephrol. Dial Transplant. 28:12 (2013), 3024–3030.
Drechsler, C., Evenepoel, P., Vervloet, M.G., Wanner, C., Ketteler, M., Marx, N., et al. High levels of circulating sclerostin are associated with better cardiovascular survival in incident dialysis patients: results from the NECOSAD study. Nephrol. Dial Transplant. 30:2 (2015), 288–293.
Bellido, T., Saini, V., Pajevic, P.D., Effects of PTH on osteocyte function. Bone 54:2 (2013), 250–257.
Graciolli, F.G., Neves, K.R., Barreto, F., Barreto, D.V., Dos Reis, L.M., Canziani, M.E., et al. The complexity of chronic kidney disease-mineral and bone disorder across stages of chronic kidney disease. Kidney Int. 91:6 (2017), 1436–1446.
Massy, Z., Drueke, T., Adynamic bone disease is a predominant bone pattern in early stages of chronic kidney disease. J. Nephrol. 30:5 (2017), 629–634.
Brandenburg, V.M., Kramann, R., Koos, R., Krüger, T., Schurgers, L., Mühlenbruch, G., et al. Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: a cross-sectional study. BMC Nephrol., 10(14), 2013, 219.
Cozzolino, M., Ureña-Torres, P., Vervloet, M.G., Brandenburg, V., Bover, J., Goldsmith, D., et al. Is chronic kidney disease-mineral bone disorder (CKD-MBD) really a syndrome?. Nephrol. Dial Transplant. 29:10 (2014), 1815–1820.
Gaudio, A., Fiore, V., Rapisarda, R., Sidoti, M.H., Xourafa, A., Catalano, A., et al. Sclerostin is a possible candidate marker of arterial stiffness: Results from a cohort study in Catania. Mol. Med. Rep. 15:5 (2017), 3420–3424.
Figurek, A., Spasovski, G., Is serum sclerostin a marker of atherosclerosis in patients with chronic kidney disease–mineral and bone disorder?. Int. Urol. Nephrol. 50:10 (2018), 1863–1870.
Lima, F., Mawad, H., El-Husseini, A.A., Davenport, D.L., Malluche, H.H., Serum bone markers in ROD patients across the spectrum of decreases in GFR: Activin A increases before all other markers. Clin. Nephrol. 91:4 (2019), 222–230.
van Lierop, A.H., Witteveen, J.E., Hamdy, N.a.T., Papapoulos, S.E., Patients with primary hyperparathyroidism have lower circulating sclerostin levels than euparathyroid controls. Eur. J. Endocrinol. 163:5 (2010), 833–837.
Durosier, C., van Lierop, A., Ferrari, S., Chevalley, T., Papapoulos, S., Rizzoli, R., Association of circulating sclerostin with bone mineral mass, microstructure, and turnover biochemical markers in healthy elderly men and women. J. Clin. Endocrinol. Metab. 98:9 (2013), 3873–3883.
Ishimura, E., Okuno, S., Ichii, M., Norimine, K., Yamakawa, T., Shoji, S., et al. Relationship between serum sclerostin, bone metabolism markers, and bone mineral density in maintenance hemodialysis patients. J. Clin. Endocrinol. Metab. 99:11 (2014), 4315–4320.
Paquot, F., Delanaye, P., Warling, X., Moonen, M., Smelten, N., Jouret, F., et al. Variations of sclerostin with other bone biomarkers over a one-year period in hemodialysis patients. Clin. Chim. Acta 486 (2018), 183–184.
Jean, G., Chazot, C., Bresson, E., Zaoui, E., Cavalier, E., High serum sclerostin levels are associated with a better outcome in haemodialysis patients. Nephron 132:3 (2016), 181–190.
Kuo, T.-H., Lin, W.-H., Chao, J.-Y., Wu, A.-B., Tseng, C.-C., Chang, Y.-T., et al. Serum sclerostin levels are positively related to bone mineral density in peritoneal dialysis patients: a cross-sectional study. BMC Nephrol., 20(1), 2019, 266.
Evenepoel, P., Claes, K., Meijers, B., Laurent, M.R., Bammens, B., Naesens, M., et al. Bone mineral density, bone turnover markers, and incident fractures in de novo kidney transplant recipients. Kidney Int. 95:6 (2019), 1461–1470.
Malluche, H.H., Davenport, D.L., Cantor, T., Monier-Faugere, M.-C., Bone mineral density and serum biochemical predictors of bone loss in patients with CKD on dialysis. Clin. J. Am. Soc. Nephrol. 9:7 (2014), 1254–1262.
Thambiah, S., Roplekar, R., Manghat, P., Fogelman, I., Fraser, W.D., Goldsmith, D., et al. Circulating sclerostin and Dickkopf-1 (DKK1) in predialysis chronic kidney disease (CKD): relationship with bone density and arterial stiffness. Calcif. Tissue Int. 90:6 (2012), 473–480.
Qureshi, A.R., Olauson, H., Witasp, A., Haarhaus, M., Brandenburg, V., Wernerson, A., et al. Increased circulating sclerostin levels in end-stage renal disease predict biopsy-verified vascular medial calcification and coronary artery calcification. Kidney Int. 88:6 (2015), 1356–1364.
Morena, M., Jaussent, I., Dupuy, A.-M., Bargnoux, A.-S., Kuster, N., Chenine, L., et al. Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: potential partners in vascular calcifications. Nephrol. Dial Transplant. 30:8 (2015), 1345–1356.
Delanaye, P., Krzesinski, J.-M., Warling, X., Moonen, M., Smelten, N., Médart, L., et al. Clinical and biological determinants of sclerostin plasma concentration in hemodialysis patients. Nephron. Clin. Pract. 128:1–2 (2014), 127–134.
Kirkpantur, A., Balci, M., Turkvatan, A., Afsar, B., Serum sclerostin levels, arteriovenous fistula calcification and 2-years all-cause mortality in prevalent hemodialysis patients. Nefrologia 36:1 (2016), 24–32.
Yang, C.-Y., Chang, Z.-F., Chau, Y.-P., Chen, A., Yang, W.-C., Yang, A.-H., et al. Circulating Wnt/β-catenin signalling inhibitors and uraemic vascular calcifications. Nephrol. Dial Transplant. 30:8 (2015), 1356–1363.
Evenepoel, P., Goffin, E., Meijers, B., Kanaan, N., Bammens, B., Coche, E., et al. Sclerostin serum levels and vascular calcification progression in prevalent renal transplant recipients. J. Clin. Endocrinol. Metab. 100:12 (2015), 4669–4676.
Lv, W., Guan, L., Zhang, Y., Yu, S., Cao, B., Ji, Y., Sclerostin as a new key factor in vascular calcification in chronic kidney disease stages 3 and 4. Int. Urol. Nephrol. 48:12 (2016), 2043–2050.
Bruzzese, A., Lacquaniti, A., Cernaro, V., Ricciardi, C.A., Loddo, S., Romeo, A., et al. Sclerostin levels in uremic patients: a link between bone and vascular disease. Ren Fail. 38:5 (2016), 759–764.
Wang, X.-R., Yuan, L., Zhang, J.-J., Hao, L., Wang, D.-G., Serum sclerostin values are associated with abdominal aortic calcification and predict cardiovascular events in patients with chronic kidney disease stages 3–5D. Nephrol. Carlton. Vic. 22:4 (2017 Apr), 286–292.
Gonçalves, F.L.C., Elias, R.M., dos Reis, L.M., Graciolli, F.G., Zampieri, F.G., Oliveira, R.B., et al. Serum sclerostin is an independent predictor of mortality in hemodialysis patients. BMC Nephrol., 2(15), 2014, 190.
Kanbay, M., Siriopol, D., Saglam, M., Kurt, Y.G., Gok, M., Cetinkaya, H., et al. Serum sclerostin and adverse outcomes in nondialyzed chronic kidney disease patients. J. Clin. Endocrinol. Metab. 99:10 (2014), E1854–E1861.
Kanbay, M., Solak, Y., Siriopol, D., Aslan, G., Afsar, B., Yazici, D., et al. Sclerostin, cardiovascular disease and mortality: a systematic review and meta-analysis. Int. Urol. Nephrol. 48:12 (2016 Dec), 2029–2042.
Desjardins, L., Liabeuf, S., Oliveira, R.B., Louvet, L., Kamel, S., Lemke, H.-D., et al. Uremic toxicity and sclerostin in chronic kidney disease patients. Nephrol. Ther. 10:6 (2014), 463–470.
Nowak, A., Artunc, F., Serra, A.L., Pollock, E., Krayenbühl, P.-A., Müller, C., et al. Sclerostin quo vadis? - is this a useful long-term mortality parameter in prevalent hemodialysis patients?. Kidney Blood Press Res. 40:3 (2015), 266–276.
Chen, A., Sun, Y., Cui, J., Zhao, B., Wang, H., Chen, X., et al. Associations of sclerostin with carotid artery atherosclerosis and all-cause mortality in Chinese patients undergoing maintenance hemodialysis. BMC Nephrol., 19(1), 2018, 264.
Cavalier, E., Delanaye, P., Vranken, L., Bekaert, A.-C., Carlisi, A., Chapelle, J.-P., et al. Interpretation of serum PTH concentrations with different kits in dialysis patients according to the KDIGO guidelines: importance of the reference (normal) values. Nephrol. Dial Transplant. 27:5 (2012), 1950–1956.