Elbreki M., Ross R.P., Hill C., O'Mahony J., McAuliffe O., Coffey A. Bacteriophages and their derivatives as biotherapeutic agents in disease prevention and treatment. J Virol [Internet] 2014, [cited June 3, 2015]; 2014:382539 [20 p.]. Available from: http://www.hindawi.com/journals/jvi/2014/382539/.
Lavigne R., Molineux I.J., Kropinski A.M. Order Caudovirales. Virus taxonomy: ninth report of the international committee on taxonomy of viruses 2011, 39-45. Elsevier, Amsterdam. A.M.Q. King, M.J. Adams, E.J. Lefkowitz, E.B. Carstens (Eds.).
Ackermann H. 5500 Phages examined in the electron microscope. Arch Virol 2007, 152:227-243.
Hankin E.H. L'action bactericide des eaux de la Jumna et du Ganges sur le vibrion du cholera. Ann Inst Pasteur 1896, 10:511-523.
Duckworth D. Who discovered bacteriophage?. Bacteriol Rev 1976, 40:793-802.
Chanishvili N. Phage therapy-history from Twort and d'Herelle through Soviet experience to current approaches. Adv Virus Res 2012, 83:400-602.
Fleming A. On antibacterial action of culture of Penicillium, with special reference to their use in isolation of B. influenzae. Br J Exp Pathol 1929, 10:226-236.
Summers W.C. Bacteriophage therapy. Annu Rev Microbiol 2001, 55:437-451.
Radetsky P. The good virus. Discover 1996, 17:50-58.
Raiga-Clemenceau A. d'Herelle's bacteriophage and its therapeutic property. Sem Hop Ther 1974, 50:229-231.
Gill J.J., Hyman P. Phage choice, isolation and preparation for phage therapy. Curr Pharm Biotechnol 2010, 11:2-14.
Dodd I.B., Shearwin K.E., Egan J.B. Revisited gene regulation in bacteriophage. Curr Opin Gen Dev 2005, 15:145-152.
Ptashne M. A genetic switch 1992, Cell Press & Blackwell Scientific Publications, Cambridge, MA.
Ślopek S., Durlakowa I., Kucharewicz-Krakowska B., Dabrowski M., Biskiewicz R. Results of bacteriophage treatment of suppurative bacterial infection. Arch Immunol Ther Exp 1983, 31:293-327.
Tenover F.C., Hughes J.M. The challenges of emerging infectious diseases. Development and spread of multiply-resistant bacterial pathogens. JAMA 1996, 275:300-304.
Smith H.W., Huggins M.B. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 1982, 128:307-318.
Nagy J.K., Király L., Schwarczinger I. Phage therapy for plant disease control with a focus on fire blight. Cent Eur J Biol 2011, 7:1-12.
Cohen S.P., McMurry L.M., Hooper D.C., Wolfson J.S., Levy S.B. Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother 1989, 33:1318-1325.
Phillips I. Withdrawal of growth-promoting antibiotics in Europe and its effects in relation to human health. Int J Antimicrob Agents 2007, 30:101-107.
Jarlier V., Carlet J., McGowan J., Goossens H., Voss A., Harbarth S., et al. Priority actions to fight antibiotic resistance: results of an international meeting. Antimicrob Resist Infect Control 2012, 1:17.
Casewell M., Friis C., Marco E., McMullin P., Phillips I. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J Antimicrob Chemother 2003, 52:159-161.
Boucher H.W., Talbot G.H., Bradley J.S., Edwards J.E., Gilbert L.D., Rice L.B., et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 2009, 48:1-12.
Carlton R.M. Phage therapy: past history and future prospects. Arch Immunol Ther Exp (Warsz) 1999, 47:267-274.
Joerger R.D. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult Sci 2003, 82:640-647.
Şlopek S., Weber-Dabrowska B., Dabrowski M., Kucharewicz-Krukowska A. Results of bacteriophage treatment of suppurative bacterial infections in the years 1981-1986. Arch Immunol Ther Exp 1987, 35:569-583.
Kalghatki S., Spina S.C., Costello J.C., Liesa M., Morones-Ramirez J.R., Slomovic S., et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci Transl Med 2013, 5. 192ra85.
Dabrowska K., Świtała-Jeleń K., Opolski A., Weber-Dabrowska B., Górski A. Bacteriophage penetration in vertebrates. J Appl Microbiol 2005, 98:7-13.
Kutter E., De Vos D., Gvasalia G., Alavidze Z., Gogokhia L., Kuhl S., et al. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 2010, 11:69-86.
Bhattacharjee A.S., Choi J., Motlagh A.M., Mukherji S.T., Goel R. Bacteriophage therapy for membrane biofouling in membrane bioreactors and antibiotic-resistant bacterial biofilms. Biotechnol Bioeng 2015, 112:1644-1654.
Hendrix R.W., Smith M.C., Burns R.N., Ford M.E., Hatfull G.F. Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc Natl Acad Sci 1999, 96:2192-2197.
Ackermann H.W. Bacteriophage taxonomy. Microbiol Aust 2011, 32:90-94.
Weber-Dabrowska B., Mulczyk M., Górski A. Bacteriophage therapy for infections in cancer patients. Clin Appl Immunol Rev 2001, 1:31.
Borysowski J., Górski A. Is phage therapy acceptable in the immunocompromised host?. Int J Infect Dis 2008, 12:466-471.
Srivastava A.S., Kaido T., Carrier E. Immunological factors that affect the in vivo fate of T7 phage in the mouse. J Virol Methods 2004, 115:99-104.
Fenton M., Ross P., McAuliffe O., O'Mahoney J., Coffey A. Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs 2010, 1:9-16.
Yang H., Yu J., Wei H. Engineered bacteriophage lysins as novel anti-infectives. Front Microbiol [Internet] 2014, 5. [cited May 18, 2015]; Article 542 [6 p.]. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199284/pdf/fmicb-05-00542.pdf. Free full text article.
Young R., Wang I., Roof W.D. Bacteriophage holins: deadly diversity. Trends Microbiol 2000, 8:120-128.
Catalão M.J., Gil F., Moniz-Pereira J., São-José C., Pimentel M. Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev 2013, 37:554-571.
Tišáková L., Godány A. Bacteriophage endolysins and their use in biotechnological processes. J Microbiol Biotech Food Sci 2014, 3:164-170.
Young R.Y. Bacteriophage lysis: mechanism and regulation. Microbiol Rev 1992, 56:430-481.
Wang I., Smith D.L., Young R. Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 2000, 54:799-825.
Tanaka S., Clemons W.M. Minimal requirements for inhibition of MraY by lysis protein E from bacteriophage ΦX174. Mol Microbiol 2012, 85:975-998.
Sable S., Lortal S. The lysins of bacteriophages infecting lactic acid bacteria. Appl Microbiol Biotechnol 1995, 43:1-6.
Kropinski A.M., Lingohr E.J., Moyles D.M., Ojha S., Mazzocco A., She Y.-M., et al. Endemic bacteriophages: a cautionary tale for evaluation of bacteriophage therapy and other interventions for infection control in animals. Virol J 2012, 9:207-215.
Nelson D., Loomis L., Fischetti V.A. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci USA 2001, 98:4107-4112.
Lai M.J., Lin N.T., Hu A., Soo P.C., Chen L.K., Chen L.H., et al. Antibacterial activity of Acinetobacter baumannii phage φAB2 endolysin (LysAB2) against both Gram-positive and Gram-negative bacteria. Appl Microbiol Biotechnol 2011, 90:529-539.
Lukacik P., Barnard T.J., Keller P.W., Chaturvedi K.S., Seddiki M., Fairman J.W. Structural engineering of a phage lysin that targets Gram-negative pathogens. Proc Natl Acad Sci USA 2012, 109:9857-9862.
Briers Y., Walmagh M., Van Puyenbroeck V., Cornelissen A., Cenens W., Aertsen A., et al. Engineered endolysin-based "Artilysins" to combat multidrug-resistant Gram-negative pathogens. mBio 2014, 5. 0e01379-14.
Lood R., Winer B.Y., Pelzek A.J., Diez-Martinez R., Thandar M., Euler C.W., et al. Novel phage lysin capable of killing the multidrug-resistant Gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob Agents Chemother 2015, 59:1983-1991.
García P., García J., García E., Sánchez-Puelles J.M., López R. Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene 1990, 86:81-88.
Koskella B., Meaden S. Understanding bacteriophage specificity in natural microbial communities. Viruses 2013, 5:806-823.
Brüssow H., Canchava C., Hardt W.D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Res 2004, 68:560-602.
Keen E. Phage therapy: concept to cure. Front Microbiol [Internet] 2012, 3:238. [cited May 18, 2015]; [3 p.]. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400130/pdf/fmicb-03-00238.pdf. Free full text article.
Rhoads D., Wolcott R., Sun Y., Dowd S. Comparison of culture and molecular identification of bacteria in chronic wounds. Int J Mol Sci 2012, 13:2535-2550.
Espy M., Uhl J., Sloan L., Buckwalter S., Jones M., Vetter E. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 2006, 19:165-256.
Tanji Y., Shimada T., Yoichi M., Miyanaga K., Hori K., Unno H. Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Appl Microbiol Biotechnol 2004, 64:270-274.
Litvinova A.M., Chtetsova V.M., Kavtreva I.G. Evaluation of efficacy of the use of E. coli-Proteus bacteriophage in intestinal dysbacteriosis in premature infants. Vopr Okhr Materin Det 1979, 23:42-44.
Matsuda T., Freeman T.A., Hilbert D.W., Duff M., Fuortes M., Stapleton P.P., et al. Lysis-deficient bacteriophage therapy decreases endotoxin and inflammatory mediator release and improves survival in a murine peritonitis model. Surgery 2005, 137:639-646.
Paul V.D., Sundarrajan S., Rajagopalan S., Hariharan S., Kempashanaiah N., Padmanabhan S., et al. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection. BMC Microbiol [Internet] 2011, 11:195. [cited June 3, 2015]; [9 p]. Available from: http://www.biomedcentral.com/1471-2180/11/195. Free full text article.
Wagner P.L., Livny J., Neely M.N., Acheson D.W.K., Friedman D.I., Waldor M.K. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol Microbiol 2002, 44:957-970.
Bishai W.R., Murphy J.R. Bacteriophage gene products that cause human disease. The bacteriophages 1988, 683-724. Plenum Press, New York, NY. R. Calendar (Ed.).
Spanier J.G., Cleary P.P. Bacteriophage control of antiphagocytic determinants in group A streptococci. J Exp Med 1980, 152:1393-1406.
Guan S., Bastin D.A., Vrma N.K. Functional analysis of the O-antigen glucosylation gene cluster of Shigella flexneri bacteriophage SfX. Microbiology 1999, 145:1263-1273.
Boyd E.F., Brüssow H. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 2002, 10:521-529.
Wagner P.L., Waldor M.K. Bacteriophage control of bacterial virulence. Infect Immun 2002, 70:3985-3993.
Tinsley C.R., Bille E., Nassif X. Bacteriophages and pathogenicity: more than providing a toxin. Microbes Infect 2006, 8:1365-1371.
Freeman V.J. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol 1951, 61:675-688.
Zabriskie J.B. The role of temperate bacteriophage in the production of erythrogenic toxin by group A streptococci. J Exp Med 1964, 119:761-779.
Fortier L.C., Sekulović O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 2013, 4:354-365.
Bensing B.A., Rubens C.E., Sullam P.M. Genetic loci of Streptococcus mitis that mediate binding to human platelets. Infect Immun 2001, 69:1373-1380.
Bensing B.A., Siboo R.M., Sullam P.M. Proteins PblA and PblB of Streptococcus mitis, which promote binding to human platelets, are encoded within a lysogenic bacteriophage. Infect Immun 2001, 69:6186-6192.
Hynes W.L., Ferretti J.J. Sequence analysis and expression in Escherichia coli of the hyaluronidase gene of Streptococcus pyogenes bacteriophage H4489A. Infect Immun 1989, 57:533-539.
Benchetrit L.C., Gray E.D., Wannamaker L.W. Hyaluronidase activity of bacteriophages of group A streptococci. Infect Immun 1977, 15:527-532.
Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 2007, 5:48-56.
Whiteley M., Bangera M.G., Bumgarner R.E., Parsek M.R., Teitzel G.M., Lory S., et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001, 413:860-864.
Rice S.A., Tan C.H., Mikkelsen P., Kung V., Woo J., Tay M., et al. The biofilm life-cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 2009, 3:271-282.
Ubukata K., Konno M., Fujii R. Transduction of drug resistance to tetracycline, chloramphenicol, macrolides, lincomycin and clindamycin with phages induced from Streptococcus pyogenes. J Antibiot (Tokyo) 1975, 28:681-688.
Colomer-Lluch M., Jofre J., Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS ONE [Internet] 2011, 6:e17549. [cited August 21, 2015]; [about 10 p.]. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017549.
Waldor M.K., Mekalanos J.J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 1994, 272:1910-1914.
Finkelstein R.A. Cholera enterotoxin (choleragen): a historical perspective. Cholera 1992, 155-187. Plenum Press, New York, NY. D. Barua, W.B. Greenborough (Eds.).
Mintz E.D., Popovic T., Blake P.A. Transmission of Vibrio cholerae O1. Vibrio cholerae and cholera: molecular to global perspectives 1994, 345-356. ASM Press, Washington, DC. I. Wachsmuth, P.A. Blake, O. Olsvik (Eds.).
Kucharewicz-Krukowska A., Ślopek S. Immunogenic effect of bacteriophage in patients subjected to phage therapy. Arch Immunol Ther Exp 1987, 35:553-561.
Huff W.E. Immune interference of bacteriophage efficacy when treating colibacillosis in poultry. Poult Sci 2010, 89:895-900.
Golkar Z., Bagasra O., Pace D.G. Bacteriophage therapy: a potential solution for the antibiotic resistance. J Infect Dev Ctries 2014, 8:129-136.
Abedon S.T. Bacterial "immunity" against bacteriophages. Bacteriophage 2012, 2:50-54.
Makarova K.S., Wolf Y.I., Snir S., Koonin E.V. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 2011, 193:6039-6056.
Makarova K.S., Wolf Y.I., Koonin E.V. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res 2013, 41:4360-4377.
Makarova K.S., Grishin N.V., Shabalina S.A., Woolf Y.I., Koonin E.V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct [Internet] 2006, 1. [cited June 5, 2015]; [26 p.]. Available from: http://www.biologydirect.com/content/pdf/1745-6150-1-7.pdf. Free full text article.
Carthew R.W., Sontheimer E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 2009, 36:642-655.
Makarova K.S., Haft D.H., Barrangou R., Brouns S.J.J., Charpentier E., Horvath P., et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011, 9:467-477.
örmälä A., Jalasvuori M. Should bacterial resistance to phages be a concern, even in the long run?. Bacteriophage 2013, 3:e24219.
Clokie M.R., Millard A.D., Letarov A.V., Heaphy S. Phages in nature. Bacteriophage 2011, 1:31-45.
Buckling A., Rainey P.B. Antagonistic coevolution between a bacterium and a bacteriophage. Proc Biol Sci 2002, 296:931-936.
Meyer J.R., Agrawal A.A., Quick R.T., Dobias D.T., Schneider D., Lenski R.E. Parallel changes in host resistance to viral infection during 45,000 generations of relaxed selection. Evolution 2010, 64:3024-3034.
Wolf A., Wiese J., Jost G., Witzel K.P. Wide geographic distribution of bacteriophages that lyse the same indigenous freshwater isolate (Sphingomonas sp. strain B18). Appl Environ Microbiol 2003, 69:2395-2398.
Seed K.D., Lazinski D.W., Calderwood B., Camilli A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host immunity. Nature 2013, 494:489-491.
Bondy-Denomy J., Pawluk A., Maxwell K.L., Davidson A.R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 2013, 493:429-432.
Yosef I., Manor M., Kiro R., Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA 2015, 112:7267-7272.
Kutter E.M., Kuhl S.J., Abedon S. Re-establishing a place for phage therapy in western medicine. Future Microbiol 2015, 10:685-688.
Abedon S.T., Kuhl S.J., Blasdel B.G., Kutter E.M. Phage treatment of human infections. Bacteriophage 2011, 1:66-85.
Chanishvili N. A literature review of the practical application of bacteriophage research 2012, Nova Science Publishers, Inc., New York, NY. 1st ed.
Pirnay J., De Vos D., Verbeken G., Merabishvili M., Chanishvili N., Vaneechoutte M., et al. The phage therapy paradigm: Prêt-à-Porter or Sur-mesure?. Pharm Res 2011, 28:934-937.
Górski A., Miedzybrodzki R., Borysowski J., Weber-Dabrowska B., Lobocka M., Fortuna W., et al. Bacteriophage therapy for the treatment of infections. Curr Opin Investig Drugs 2009, 10:766-774.
Sarhan W.A., Azzazy H.M.E. Phage approved in food, why not as a therapeutic?. Expert Rev Anti Infect Ther 2015, 13:91-101.
Pirnay J., Blasdel B.G., Bretaudeau L., Buckling A., Chanishvili N., Clark J.R., et al. Quality and safety requirements for sustainable phage therapy products. Pharm Res 2015, 32:2173-2179.
Sulakvelidze A. The challenges of bacteriophage therapy. Eur Ind Pharm 2011, 10:14-18.
Thiel K. Old dogma, new tricks-21st century phage therapy. Nat Biotechnol 2004, 22:31-36.
Brüssow H. What is needed for phage therapy to become a reality in Western medicine?. Virology 2012, 434:138-142.
Intralytix, Inc. Intralytix receives additional regulatory approval for ListShield™-phage-based food safety product effective against Listeria monocytogenes [Internet] 2015, Intralytix, Inc., Baltimore, MD, [cited August 21, 2015] Available from: http://www.intralytix.com/Intral_News_PR010515.htm.
Henein A. What are the limitations on the wider therapeutic use of phage?. Bacteriophage [Internet] 2013, e24872. [cited August 21, 2015]; [about 6 p.]. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821673/.
Pirnay J., Verbeken G., Rose T., Jennes S., Zizi M., Huys I., et al. Introducing yesterday's phage therapy in today's medicine. Future Virol 2012, 7:379-390.