Berendsen, S.; Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, Netherlands
Spliet, W. G. M.; Department of Pathology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, Netherlands
Geurts, M.; Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, Netherlands
Van Hecke, W.; Department of Pathology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, Netherlands
Seute, T.; Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, Netherlands
Snijders, T. J.; Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, Netherlands
Bours, Vincent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Génétique humaine
Bell, E. H.; Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital, The Ohio State University, West 10th Avenue, Columbus, OH 43210, United States
Chakravarti, A.; Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital, The Ohio State University, West 10th Avenue, Columbus, OH 43210, United States
Robe, Pierre ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Language :
English
Title :
Epilepsy associates with decreased HIF-1α/STAT5b signaling in glioblastoma
Verhaak, R.G.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98-110.
Carro, M.S.; Lim, W.K.; Alvarez, M.J.; Bollo, R.J.; Zhao, X.; Snyder, E.Y. The transcriptional network for mesenchymal transformation of brain tumours. Nature 2010, 463, 318-325.
Bhat, K.P.; Balasubramaniyan, V.; Vaillant, B.; Ezhilarasan, R.; Hummelink, K.; Hollingsworth, F. Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 2013, 24, 331-346.
Kerkhof, M.; Dielemans, J.C.; van Breemen, M.S.; Zwinkels, H.; Walchenbach, R.; Taphoorn, M.J.; Vecht, C.J. Effect of valproic acid on seizure control and on survival in patients with glioblastoma multiforme. Neuro-Oncology 2013, 15, 961-967.
Berendsen, S.; Varkila, M.; Kroonen, J.; Seute, T.; Snijders, T.J.; Kauw, F. Prognostic relevance of epilepsy at presentation in glioblastoma patients. Neuro-Oncology 2016, 18, 700-706.
Happold, C.; Gorlia, T.; Chinot, O.; Gilbert, M.R.; Nabors, L.B.;Wick,W. Does Valproic Acid or Levetiracetam Improve Survival in Glioblastoma? A Pooled Analysis of Prospective Clinical Trials in Newly Diagnosed Glioblastoma. J. Clin. Oncol. 2016, 34, 731-739.
van Breemen, M.S.; Wilms, E.B.; Vecht, C.J. Epilepsy in patients with brain tumours: Epidemiology, mechanisms, and management. Lancet Neurol. 2007, 6, 421-430.
Gao, X.; Wang, H.; Cai, S.; Saadatzadeh, M.R.; Hanenberg, H.; Pollok, K.E. Phosphorylation of NMDA 2B at S1303 in human glioma peritumoral tissue: Implications for glioma epileptogenesis. Neurosurg. Focus 2014, 37, E17.
Gao, X.; Wang, H.; Pollok, K.E.; Chen, J.; Cohen-Gadol, A.A. Activation of death-associated protein kinase in human peritumoral tissue: A potential therapeutic target. J. Clin. Neurosci. 2015, 22, 1655-1660.
Yuen, T.I.; Morokoff, A.P.; Bjorksten, A.; D’abaco, G.; Paradiso, L.; Finch, S. Glutamate is associated with a higher risk of seizures in patients with gliomas. Neurology 2012, 79, 883-889.
Robert, S.M.; Buckingham, S.C.; Campbell, S.L.; Robel, S.; Holt, K.T.; Ogunrinu-Babarinde, T. SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci. Transl. Med. 2015, 7, 289ra86.
Rosati, A. Epilepsy in glioblastoma multiforme: Correlation with glutamine synthetase levels. J. Neurooncol. 2009, 93, 319-324.
Neal, A. IDH1 and IDH2 mutations in postoperative diffuse glioma-associated epilepsy. Epilepsy Behav. 2018, 78, 30-36.
Li, Y. IDH1 mutation is associated with a higher preoperative seizure incidence in low-grade glioma:A systematic review and meta-analysis. Seizure 2018, 55, 76-82.
Chen, H. Mutant IDH1 and seizures in patients with glioma. Neurology 2017, 88, 1805-1813.
Lee, J.W.; Norden, A.D.; Ligon, K.L.; Golby, A.J.; Beroukhim, R.; Quackenbush, J. Tumor associated seizures in glioblastomas are influenced by survival gene expression in a region-specific manner: A gene expression imaging study. Epilepsy Res. 2014, 108, 843-852.
Pak, S.H. Hypoxia upregulates Hsp90alpha expression via STAT5b in cancer cells. Int. J. Oncol. 2012, 41, 161-168.
Joung, Y.H. Hypoxia activates the IGF-1 expression through STAT5b in human HepG2 cells. Biochem. Biophys. Res. Commun. 2007, 358, 733-738.
Joung, Y.H.; Lim, E.J.; Lee, M.Y.; Park, J.H.; Ye, S.K.; Park, E.U. Hypoxia activates the cyclin D1 promoter via the Jak2/STAT5b pathway in breast cancer cells. Exp. Mol. Med. 2005, 37, 353-364.
Lee, M.Y. Phosphorylation and activation of STAT proteins by hypoxia in breast cancer cells. Breast 2006, 15, 187-195.
Zhang, Q.; Lenardo, M.J.; Baltimore, D. 30 Years of NF-kappaB: A Blossoming of Relevance to Human Pathobiology. Cell 2017, 168, 37-57.
van der Krieken, S.E. CCAAT/enhancer binding protein beta in relation to ER stress, inflammation, and metabolic disturbances. Biomed. Res. Int. 2015, 2015, 324815.
Villarino, A.V. Mechanisms of Jak/STAT signaling in immunity and disease. J. Immunol. 2015, 194, 21-27.
Cooper, L.A.; Gutman, D.A.; Chisolm, C.; Appin, C.; Kong, J.; Rong, Y. The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am. J. Pathol. 2012, 180, 2108-2119.
Bredel, M. Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J. Clin. Oncol. 2006, 24, 274-287.
Carmeliet, P.; Dor, Y.; Herbert, J.M.; Fukumura, D.; Brusselmans, K.; Dewerchin, M. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998, 394, 485-490.
Joseph, J.V.; Conroy, S.; Pavlov, K.; Sontakke, P.; Tomar, T.; Eggens-Meijer, E. Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1alpha-ZEB1 axis. Cancer Lett. 2015, 359, 107-116.
Talasila, K.M. The angiogenic switch leads to a metabolic shift in human glioblastoma. Neuro-Oncology 2017, 19, 383-393.
Murat, A. Modulation of angiogenic and inflammatory response in glioblastoma by hypoxia. PLoS ONE 2009, 4, e5947.
Jung, J.E.; Lee, H.G.; Cho, I.H.; Chung, D.H.; Yoon, S.H.; Yang, Y.M. STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J. 2005, 19, 1296-1298.
Ganguly, D. The critical role that STAT3 plays in glioma-initiating cells: STAT3 addiction in glioma. Oncotarget 2018, 9, 22095-22112.
Alkharusi, A. Stimulation of prolactin receptor induces STAT-5 phosphorylation and cellular invasion in glioblastoma multiforme. Oncotarget 2016, 7, 79572-79583.
Gressot, L.V.; Doucette, T.A.; Yang, Y.; Fuller, G.N.; Heimberger, A.B.; Bögler, O. Signal transducer and activator of transcription 5b drives malignant progression in a PDGFB-dependent proneural glioma model by suppressing apoptosis. Int. J. Cancer 2015, 136, 2047-2054.
Liang, Q.C.; Xiong, H.; Zhao, Z.W.; Jia, D.; Li, W.X.; Qin, H.Z. Inhibition of transcription factor STAT5b suppresses proliferation, induces G1 cell cycle arrest and reduces tumor cell invasion in human glioblastoma multiforme cells. Cancer Lett. 2009, 273, 164-171.
Cao, S.; Wang, C.; Zheng, Q.; Qiao, Y.; Xu, K.; Jiang, T.; Wu, A. STAT5 regulates glioma cell invasion by pathways dependent and independent of STAT5 DNA binding. Neurosci. Lett. 2011, 487, 228-233.
Fan, Q.W. EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell 2013, 24, 438-449.
Roos, A. EGFRvIII-Stat5 Signaling Enhances Glioblastoma Cell Migration and Survival. Mol. Cancer Res. 2018, 16, 1185-1195.
Latha, K.; Li, M.; Chumbalkar, V.; Gururaj, A.; Hwang, Y.; Dakeng, S. Nuclear EGFRvIII-STAT5b complex contributes to glioblastoma cell survival by direct activation of the Bcl-XL promoter. Int. J. Cancer 2013, 132, 509-520.
Park, S.H.; Yamashita, H.; Rui, H.; Waxman, D.J. Serine phosphorylation of GH-activated signal transducer and activator of transcription 5a (STAT5a) and STAT5b: Impact on STAT5 transcriptional activity. Mol. Endocrinol. 2001, 15, 2157-2171.
Robe, P.A. (University Medical Center Utrecht, Utrecht, The Netherlands). Personal communication, 2018.
Miyoshi, K.; Shillingford, J.M.; Smith, G.H.; Grimm, S.L.; Wagner, K.U.; Oka, T. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J. Cell Biol. 2001, 155, 531-542.
Valle-Casuso, J.C. HIF-1 and c-Src mediate increased glucose uptake induced by endothelin-1 and connexin43 in astrocytes. PLoS ONE 2012, 7, e32448.
Dong, H. Complex role of connexin 43 in astrocytic tumors and possible promotion of gliomaassociated epileptic discharge (Review). Mol. Med. Rep. 2017, 16, 7890-7900.
Collignon, F. Altered expression of connexin subtypes in mesial temporal lobe epilepsy in humans. J. Neurosurg. 2006, 105, 77-87.
Linher-Melville, K. Chronic Inhibition of STAT3/STAT5 in Treatment-Resistant Human Breast Cancer Cell Subtypes: Convergence on the ROS/SUMO Pathway and Its Effects on xCT Expression and System xc-Activity. PLoS ONE 2016, 11, e0161202.
Lösing, P.; Niturad, C.E.; Harrer, M.; zu Reckendorf, C.M.; Schatz, T.; Sinske, D. SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model. Mol. Brain 2017, 10, 30.
Kuzniewska, B. Adult Deletion of SRF Increases Epileptogenesis and Decreases Activity-Induced Gene Expression. Mol. Neurobiol. 2016, 53, 1478-1493.
Ohrnberger, S. Dysregulated serum response factor triggers formation of hepatocellular carcinoma. Hepatology 2015, 61, 979-989.
Qiao, J. SRF promotes gastric cancer metastasis through stromal fibroblasts in an SDF1-CXCR4-dependent manner. Oncotarget 2016, 7, 46088-46099.
Lundon, D.J.; Boland, A.; Prencipe, M.; Hurley, G.; O’Neill, A.; Kay, E. The prognostic utility of the transcription factor SRF in docetaxel-resistant prostate cancer: In-vitro discovery and in-vivo validation. BMC Cancer 2017, 17, 163.
Turkheimer, F.E.; Roncaroli, F.; Hennuy, B.; Herens, C.; Nguyen, M.; Martin, D. Chromosomal patterns of gene expression from microarray data: Methodology, validation and clinical relevance in gliomas. BMC Bioinform. 2006, 7, 526.
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545-15550.
Reich, M. GenePattern 2.0. Nat. Genet. 2006, 38, 500-501.
Wislet-Gendebien, S.; Poulet, C.; Neirinckx, V.; Hennuy, B.; Swingland, J.T.; Laudet, E. In vivo tumorigenesis was observed after injection of in vitro expanded neural crest stem cells isolated from adult bone marrow. PLoS ONE 2012, 7, e46425.
Eisen, M.B.; Spellman, P.T.; Brown, P.O.; Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 1998, 95, 14863-14868.