[en] INTRODUCTION: The subventricular zone (SVZ) in the brain is associated with gliomagenesis and resistance to treatment in glioblastoma. In this study, we investigate the prognostic role and biological characteristics of subventricular zone (SVZ) involvement in glioblastoma. METHODS: We analyzed T1-weighted, gadolinium-enhanced MR images of a retrospective cohort of 647 primary glioblastoma patients diagnosed between 2005-2013, and performed a multivariable Cox regression analysis to adjust the prognostic effect of SVZ involvement for clinical patient- and tumor-related factors. Protein expression patterns of a.o. markers of neural stem cellness (CD133 and GFAP-δ) and (epithelial-) mesenchymal transition (NF-κB, C/EBP-β and STAT3) were determined with immunohistochemistry on tissue microarrays containing 220 of the tumors. Molecular classification and mRNA expression-based gene set enrichment analyses, miRNA expression and SNP copy number analyses were performed on fresh frozen tissue obtained from 76 tumors. Confirmatory analyses were performed on glioblastoma TCGA/TCIA data. RESULTS: Involvement of the SVZ was a significant adverse prognostic factor in glioblastoma, independent of age, KPS, surgery type and postoperative treatment. Tumor volume and postoperative complications did not explain this prognostic effect. SVZ contact was associated with increased nuclear expression of the (epithelial-) mesenchymal transition markers C/EBP-β and phospho-STAT3. SVZ contact was not associated with molecular subtype, distinct gene expression patterns, or markers of stem cellness. Our main findings were confirmed in a cohort of 229 TCGA/TCIA glioblastomas. CONCLUSION: In conclusion, involvement of the SVZ is an independent prognostic factor in glioblastoma, and associates with increased expression of key markers of (epithelial-) mesenchymal transformation, but does not correlate with stem cellness, molecular subtype, or specific (mi)RNA expression patterns.
Disciplines :
Genetics & genetic processes
Author, co-author :
Berendsen, S.; UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of UtrechtUtrecht, Netherlands
van Bodegraven, E.; UMC Utrecht Brain Center, Department of Translational Neuroscience, University Medical Center of UtrechtUtrecht, Netherlands
Seute, T.; UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of UtrechtUtrecht, Netherlands
Spliet, W. G. M.; Department of Pathology, University Medical Center of UtrechtUtrecht, Netherlands
Geurts, M.; UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of UtrechtUtrecht, Netherlands
Hendrikse, J.; Department of Radiology, University Medical Center of UtrechtUtrecht, Netherlands
SCHOYSMAN, Laurent ; Centre Hospitalier Universitaire de Liège - CHU > Département de Physique Médicale > Service médical de radiodiagnostic
Huiszoon, W. B.; UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of UtrechtUtrecht, Netherlands
Varkila, M.; UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of UtrechtUtrecht, Netherlands
Rouss, S.; UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of UtrechtUtrecht, Netherlands
Bell, E. H.; Department of Radiation Oncology, Wexner Medical Center, James Cancer Center, Ohio State University, Columbus, OH, United States of America
Kroonen, J.; UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of UtrechtUtrecht, Netherlands, Department of Human Genetics, GIGA Research Center, Liège University Hospital, Liège, Belgium
Chakravarti, A.; Department of Radiation Oncology, Wexner Medical Center, James Cancer Center, Ohio State University, Columbus, OH, United States of America
Bours, Vincent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Génétique humaine
Snijders, T. J.; UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of UtrechtUtrecht, Netherlands
Robe, Pierre ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial. JAMA. 2015; 314(23):2535-43. https://doi.org/10.1001/jama.2015.16669 PMID: 26670971
Ellingson BM, Cloughesy TF, Pope WB, Zaw TM, Phillips H, Lalezari S, et al. Anatomic localization of O6-methylguanine DNA methyltransferase (MGMT) promoter methylated and unmethylated tumors: a radiographic study in 358 de novo human glioblastomas. NeuroImage. 2012; 59(2):908-16. https://doi. org/10.1016/j.neuroimage.2011.09.076 PMID: 22001163
Smith TR, Hulou MM, Abecassis J, Das S, Chandler JP. Use of preoperative FLAIR MRI and ependymal proximity of tumor enhancement as surrogate markers of brain tumor origin. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia. 2015; 22(9):1397-402. https:// doi.org/10.1016/j.jocn.2015.02.029 PMID: 26055954
Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. The New England Journal of Medicine. 2005; 353(8):811-22. https://doi.org/10.1056/NEJMra043666 PMID: 16120861
Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE, et al. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell. 2009; 15(6):514-26. https://doi.org/10.1016/j.ccr.2009.04.001 PMID: 19477430
Lee JH, Lee JE, Kahng JY, Kim SH, Park JS, Yoon SJ, et al. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature. 2018; 560(7717):243-7. Epub 2018/08/03. https://doi.org/10.1038/s41586-018-0389-3 PMID: 30069053.
Kroonen J, Nassen J, Boulanger YG, Provenzano F, Capraro V, Bours V, et al. Human glioblastoma-initiating cells invade specifically the subventricular zones and olfactory bulbs of mice after striatal injection. International Journal of Cancer. 2011; 129(3):574-85. https://doi.org/10.1002/ijc.25709 PMID: 20886597
Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Research. 2006; 66(16):7843-8. https://doi.org/10.1158/0008-5472.CAN-06-1010 PMID: 16912155
Lee P, Eppinga W, Lagerwaard F, Cloughesy T, Slotman B, Nghiemphu PL, et al. Evaluation of high ipsilateral subventricular zone radiation therapy dose in glioblastoma: a pooled analysis. Int J Radiat Oncol Biol Phys. 2013; 86(4):609-15. Epub 2013/03/07. https://doi.org/10.1016/j.ijrobp.2013.01.009 PMID: 23462418.
Goffart N, Kroonen J, Di Valentin E, Dedobbeleer M, Denne A, Martinive P, et al. Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling. Neuro-Oncology. 2015; 17(1):81-94. https://doi.org/10.1093/neuonc/nou144 PMID: 25085362
Goffart N, Lombard A, Lallemand F, Kroonen J, Nassen J, Di Valentin E, et al. CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone. Neuro-Oncology. 2017; 19(1):66-77. Epub 2016/07/03. https://doi.org/10.1093/neuonc/now136 PMID: 27370398; PubMed Central PMCID: PMC5193023.
Chen L, Chaichana KL, Kleinberg L, Ye X, Quinones-Hinojosa A, Redmond K. Glioblastoma recurrence patterns near neural stem cell regions. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology. 2015; 116(2):294-300. https://doi.org/10.1016/j.radonc.2015. 07.032 PMID: 26276527
Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012; 488(7412):522-6. https://doi.org/10.1038/ nature11287 PMID: 22854781
Adeberg S, Konig L, Bostel T, Harrabi S, Welzel T, Debus J, et al. Glioblastoma recurrence patterns after radiation therapy with regard to the subventricular zone. Int J Radiat Oncol Biol Phys. 2014; 90 (4):886-93. Epub 2014/09/16. https://doi.org/10.1016/j.ijrobp.2014.07.027 PMID: 25220720.
Lim DA, Cha S, Mayo MC, Chen MH, Keles E, VandenBerg S, et al. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro-Oncology. 2007; 9(4):424-9. https://doi.org/10.1215/15228517-2007-023 PMID: 17622647
Kappadakunnel M, Eskin A, Dong J, Nelson SF, Mischel PS, Liau LM, et al. Stem cell associated gene expression in glioblastoma multiforme: relationship to survival and the subventricular zone. Journal of Neuro-Oncology. 2010; 96(3):359-67. Epub 2009/08/06. https://doi.org/10.1007/s11060-009-9983-4 PMID: 19655089; PubMed Central PMCID: PMC2808508.
Chaichana KL, McGirt MJ, Frazier J, Attenello F, Guerrero-Cazares H, Quinones-Hinojosa A. Relationship of glioblastoma multiforme to the lateral ventricles predicts survival following tumor resection. Journal of Neuro-Oncology. 2008; 89(2):219-24. Epub 2008/05/07. https://doi.org/10.1007/s11060-008-9609-2 PMID: 18458819.
Jungk C, Warta R, Mock A, Friauf S, Hug B, Capper D, et al. Location-Dependent Patient Outcome and Recurrence Patterns in IDH1-Wildtype Glioblastoma. Cancers. 2019; 11(1). Epub 2019/01/24. https:// doi.org/10.3390/cancers11010122 PMID: 30669568; PubMed Central PMCID: PMC6356480.
Gevaert O, Mitchell LA, Achrol AS, Xu J, Echegaray S, Steinberg GK, et al. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology. 2014; 273(1):168-74. https://doi.org/10.1148/radiol.14131731 PMID: 24827998
Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman M, Liang Y, et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proceedings of the National Academy of Sciences of the United States of America. 2008; 105(13):5213-8. https://doi.org/10.1073/pnas. 0801279105 PMID: 18362333
Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora TD, et al. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology. 2013; 267(2):560-9. https://doi.org/10.1148/radiol.13120118 PMID: 23392431
Jungk C, Mock A, Exner J, Geisenberger C, Warta R, Capper D, et al. Spatial transcriptome analysis reveals Notch pathway-associated prognostic markers in IDH1 wild-type glioblastoma involving the subventricular zone. BMC Med. 2016; 14(1):170. Epub 2016/10/27. https://doi.org/10.1186/s12916-016-0710-7 PMID: 27782828; PubMed Central PMCID: PMC5080721.
Itakura H, Achrol AS, Mitchell LA, Loya JJ, Liu T, Westbroek EM, et al. Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Science Translational Medicine. 2015; 7(303):303ra138. https://doi.org/10.1126/scitranslmed.aaa7582 PMID: 26333934
Gollapalli K, Ghantasala S, Kumar S, Srivastava R, Rapole S, Moiyadi A, et al. Subventricular zone involvement in Glioblastoma-A proteomic evaluation and clinicoradiological correlation. Sci Rep. 2017; 7(1):1449. Epub 2017/05/05. https://doi.org/10.1038/s41598-017-01202-8 PMID: 28469129; PubMed Central PMCID: PMC5431125.
Denicolai E, Tabouret E, Colin C, Metellus P, Nanni I, Boucard C, et al. Molecular heterogeneity of glioblastomas; does location matter? Oncotarget. 2015. https://doi.org/10.18632/oncotarget.6433 PMID: 26637806
Jamshidi N, Diehn M, Bredel M, Kuo MD. Illuminating radiogenomic characteristics of glioblastoma multiforme through integration of MR imaging, messenger RNA expression, and DNA copy number variation. Radiology. 2014; 270(1):1-2. https://doi.org/10.1148/radiol.13130078 PMID: 24056404
Berendsen S, Varkila M, Kroonen J, Seute T, Snijders TJ, Kauw F, et al. Prognostic relevance of epilepsy at presentation in glioblastoma patients. Neuro-Oncology. 2016; 18(5):700-6. Epub 2015/10/01. https://doi.org/10.1093/neuonc/nov238 PMID: 26420896; PubMed Central PMCID: PMC4827038.
Berendsen S, Spliet WGM, Geurts M, Van Hecke W, Seute T, Snijders TJ, et al. Epilepsy Associates with Decreased HIF-1alpha/STAT5b Signaling in Glioblastoma. Cancers. 2019; 11(1). Epub 2019/01/10. https://doi.org/10.3390/cancers11010041 PMID: 30621209.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(43):15545-50. https:// doi.org/10.1073/pnas.0506580102 PMID: 16199517
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010; 17(1):98-110. https://doi.org/10.1016/j.ccr.2009.12.020 PMID: 20129251
Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, et al. Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature. 2005; 434 (7031):338-45. https://doi.org/10.1038/nature03441 PMID: 15735639
Jiang L, Song L, Wu J, Yang Y, Zhu X, Hu B, et al. Bmi-1 promotes glioma angiogenesis by activating NF-kappaB signaling. PLoS One. 2013; 8(1):e55527. Epub 2013/02/06. https://doi.org/10.1371/journal. pone.0055527 PMID: 23383216; PubMed Central PMCID: PMC3561301.
Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, et al. Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell. 2013; 24(3):331-46. https://doi.org/10.1016/j.ccr.2013.08.001 PMID: 23993863
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004; 432(7015):396-401. https://doi.org/10.1038/nature03128 PMID: 15549107
Roelofs RF, Fischer DF, Houtman SH, Sluijs JA, Van Haren W, Van Leeuwen FW, et al. Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia. 2005; 52(4):289-300. https://doi.org/10.1002/glia.20243 PMID: 16001427
Gorlia T, van den Bent MJ, Hegi ME, Mirimanoff RO, Weller M, Cairncross JG, et al. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. The Lancet Oncology. 2008; 9(1):29-38. Epub 2007/12/18. https:// doi.org/10.1016/S1470-2045(07)70384-4 PMID: 18082451.
Adeberg S, Bostel T, Konig L, Welzel T, Debus J, Combs SE. A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival? Radiation Oncology (London, England). 2014; 9:95-717X-9-95. https://doi.org/10.1186/1748-717X-9-95 PMID: 24758192
Matsuda M, Kohzuki H, Ishikawa E, Yamamoto T, Akutsu H, Takano S, et al. Prognostic analysis of patients who underwent gross total resection of newly diagnosed glioblastoma. J Clin Neurosci. 2018; 50:172-6. Epub 2018/02/06. https://doi.org/10.1016/j.jocn.2018.01.009 PMID: 29396060.
Nakagawa Y, Sasaki H, Ohara K, Ezaki T, Toda M, Ohira T, et al. Clinical and Molecular Prognostic Factors for Long-Term Survival of Patients with Glioblastomas in Single-Institutional Consecutive Cohort. World Neurosurg. 2017; 106:165-73. Epub 2017/07/02. https://doi.org/10.1016/j.wneu.2017. 06.126 PMID: 28666913.
Jafri NF, Clarke JL, Weinberg V, Barani IJ, Cha S. Relationship of glioblastoma multiforme to the subventricular zone is associated with survival. Neuro-Oncology. 2013; 15(1):91-6. Epub 2012/10/26. https://doi.org/10.1093/neuonc/nos268 PMID: 23095230; PubMed Central PMCID: PMC3534420.
Young GS, Macklin EA, Setayesh K, Lawson JD, Wen PY, Norden AD, et al. Longitudinal MRI evidence for decreased survival among periventricular glioblastoma. Journal of Neuro-Oncology. 2011; 104 (1):261-9. https://doi.org/10.1007/s11060-010-0477-1 PMID: 21132516
Mistry AM, Dewan MC, White-Dzuro GA, Brinson PR, Weaver KD, Thompson RC, et al. Decreased survival in glioblastomas is specific to contact with the ventricular-subventricular zone, not subgranular zone or corpus callosum. Journal of Neuro-Oncology. 2017; 132(2):341-9. Epub 2017/01/12. https:// doi.org/10.1007/s11060-017-2374-3 PMID: 28074322; PubMed Central PMCID: PMC5771712.
Weinberg BD, Boreta L, Braunstein S, Cha S. Location of subventricular zone recurrence and its radiation dose predicts survival in patients with glioblastoma. Journal of Neuro-Oncology. 2018; 138(3):549-56. Epub 2018/03/17. https://doi.org/10.1007/s11060-018-2822-8 PMID: 29546530.
Woo P, Ho J, Lam S, Ma E, Chan D, Wong WK, et al. A Comparative Analysis of the Usefulness of Survival Prediction Models for Patients with Glioblastoma in the Temozolomide Era: The Importance of Methylguanine Methyltransferase Promoter Methylation, Extent of Resection, and Subventricular Zone Location. World Neurosurg. 2018; 115:e375-e85. Epub 2018/04/22. https://doi.org/10.1016/j.wneu. 2018.04.059 PMID: 29678708.
Mistry AM, Wooten DJ, Davis LT, Mobley BC, Quaranta V, Ihrie RA. Ventricular-Subventricular Zone Contact by Glioblastoma is Not Associated with Molecular Signatures in Bulk Tumor Data. Sci Rep. 2019; 9(1):1842. Epub 2019/02/14. https://doi.org/10.1038/s41598-018-37734-w PMID: 30755636; PubMed Central PMCID: PMC6372607.
Mistry AM. Clinical correlates of subventricular zone-contacting glioblastomas: a meta-analysis. Journal of Neurosurgical Sciences. 2017. https://doi.org/10.23736/S0390-5616.17.04274-6
Harat M, Malkowski B, Roszkowski K. Prognostic value of subventricular zone involvement in relation to tumor volumes defined by fused MRI and O-(2-[(18)F]fluoroethyl)-L-tyrosine (FET) PET imaging in glioblastoma multiforme. Radiation Oncology (London, England). 2019; 14(1):37. Epub 2019/03/06. https://doi.org/10.1186/s13014-019-1241-0 PMID: 30832691; PubMed Central PMCID: PMC6398237.
Kongkham PN, Knifed E, Tamber MS, Bernstein M. Complications in 622 cases of frame-based stereotactic biopsy, a decreasing procedure. The Canadian Journal of Neurological Sciences. 2008; 35 (1):79-84. https://doi.org/10.1017/s0317167100007605 PMID: 18380282
Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. Journal of Neurosurgery. 2011; 115(1):3-8. https://doi.org/10.3171/2011.2. JNS10998 PMID: 21417701
Brown TJ, Brennan MC, Li M, Church EW, Brandmeir NJ, Rakszawski KL, et al. Association of the Extent of Resection With Survival in Glioblastoma: A Systematic Review and Meta-analysis. JAMA Oncology. 2016; 2(11):1460-9. Epub 2016/06/17. https://doi.org/10.1001/jamaoncol.2016.1373 PMID: 27310651.
Steed TC, Treiber JM, Patel K, Ramakrishnan V, Merk A, Smith AR, et al. Differential localization of glioblastoma subtype: implications on glioblastoma pathogenesis. Oncotarget. 2016; 7(18):24899-907. https://doi.org/10.18632/oncotarget.8551 PMID: 27056901
Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature. 2010; 463(7279):318-25. Epub 2009/12/25. https://doi.org/10.1038/nature08712 PMID: 20032975; PubMed Central PMCID: PMC4011561.
Cooper LA, Gutman DA, Chisolm C, Appin C, Kong J, Rong Y, et al. The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. The American Journal of Pathology. 2012; 180(5):2108-19. Epub 2012/03/24. https://doi.org/10.1016/j. ajpath.2012.01.040 PMID: 22440258; PubMed Central PMCID: PMC3354586.
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica. 2007; 114(2):97-109. Epub 2007/07/10. https://doi.org/10.1007/s00401-007-0243-4 PMID: 17618441; PubMed Central PMCID: PMC1929165.
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica. 2016; 131(6):803-20. Epub 2016/05/10. https://doi.org/10.1007/s00401-016-1545-1 PMID: 27157931.