electron precipitation; JEDI; Juno; Jupiter aurora; ultraviolet emission; UVS
Abstract :
[en] We present comparisons of precipitating electron flux and auroral brightness measurements made during several Juno transits over Jupiter's auroral regions in both hemispheres. We extract from the ultraviolet spectrograph (UVS) spectral imager H2 emission intensities at locations magnetically conjugate to the spacecraft using the JRM09 model. We use UVS images as close in time as possible to the electron measurements by the Jupiter Energetic Particle Detector Instrument (JEDI) instrument. The upward electron flux generally exceeds the downward component and shows a broadband energy distribution. Auroral intensity is related to total precipitated electron flux and compared with the energy-integrated JEDI flux inside the loss cone. The far ultraviolet color ratio along the spacecraft footprint maps variations of the mean energy of the auroral electron precipitation. A wide diversity of situations has been observed. The intensity of the diffuse emission equatorward of the main oval is generally in fair agreement with the JEDI downward energy flux. The intensity of the ME matches exceeds or remains below the value expected from the JEDI electron energy flux. The polar emission may be more than an order of magnitude brighter than associated with the JEDI electron flux in association with high values of the color ratio. We tentatively explain these observations by the location of the electron energization region relative to Juno's orbit as it transits the auroral region. Current models predict that the extent and the altitude of electron acceleration along the magnetic field lines are consistent with this assumption.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Mauk, B. H.
Gladstone, G. R.
Yao, Zhonghua ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Greathouse, T. K.
Hue, V.
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gkouvelis, Leonardos ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Kammer, J. A.
Versteeg, M.
Clark, G.
Radioti, Aikaterini ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Clark, G., Ebert, R. W., Kim, T. K., Kurth, W. S., Levin, S., Louarn, P., Mauk, B., McComas, D. J., Pollock, C., Ranquist, D., Reno, M., Szalay, J. R., Thomsen, M. F., Valek, P., Weidner, S., Wilson, R. J., & Zink, J. L. (2017). Electron beams and loss cones in the auroral regions of Jupiter. Geophysical Research Letters, 44, 7131–7139. https://doi.org/10.1002/2017gl073180
Bagenal, F., Adriani, A., Allegrini, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Connerney, J. E. P., Cowley, S. W. H., Ebert, R. W., Gladstone, G. R., Hansen, C. J., Kurth, W. S., Levin, S. M., Mauk, B. H., McComas, D. J., Paranicas, C. P., Santos-Costa, D., Thorne, R. M., Valek, P., Waite, J. H., & Zarka, P. (2017). Magnetospheric science objectives of the Juno mission. Space Science Reviews, 213, 219–287. https://doi.org/10.1007/s11214-014-0036-8
Bhattacharya, B., Thorne, R. M., Williams, D. J., Khurana, K. K., & Gurnett, D. A. (2005). Diffuse auroral precipitation in the Jovian upper atmosphere and magnetospheric electron flux variability. Icarus, 178, 406–416. https://doi.org/10.1016/j.icarus.2005.06.013
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., Bagenal, F., Gautier, D., Ingersoll, A. P., Orton, G. S., Guillot, T., Hubbard, W., Bloxham, J., Coradini, A., Stephens, S. K., Mokashi, P., Thorne, R., & Thorpe, R. (2017). The Juno mission. Space Science Reviews, 213(1-4), 5–37. https://doi.org/10.1007/s11214-017-0429-6
Bonfond, B., Gladstone, G. R., Grodent, D., Gérard, J.-C., Greathouse, T. K., Hue, V., Kammer, J. A., Versteeg, M. H., Davis, M. W., Becker, H. N., Radioti, A., Elliott, S. S., Imai, M., Paranicas, C. P., Bolton, S. J., Levin, S. M., & Connerney, J. E. P. (2018). Bar code events in the Juno-UVS data: Signature ~10 MeV electron microbursts at Jupiter. Geophysical Research Letters, 45, 12,108–12,115. https://doi.org/10.1029/2018GL080490
Bonfond, B., Gladstone, G. R., Grodent, D., Greathouse, T. K., Versteeg, M. H., Hue, V., Davis, M. W., Vogt, M. F., Gérard, J.-C., Radioti, A., Bolton, S., Levin, S. M., Connerney, J. E. P., Mauk, B. H., Valek, P., Adriani, A., & Kurth, W. S. (2017). Morphology of the UV aurorae Jupiter during Juno's first perijove observations. Geophysical Research Letters, 44, 4463–4471. https://doi.org/10.1002/2017gl073114
Bonfond, B., Grodent, D., Badman, S. V., Gérard, J. C., & Radioti, A. (2016). Dynamics of the flares in the active polar region of Jupiter. Geophysical Research Letters, 43, 11-963–11,970. https://doi.org/10.1002/2016gl071757
Bonfond, B., Gustin, J., Gérard, J.-C., Grodent, D., Radioti, A., Palmaerts, B., Badman, S. V., Khurana, K. K., & Tao, C. (2015). The far-ultraviolet main auroral emission at Jupiter–Part 2: Vertical emission profile. Annales Geophysicae, 33, 1211–1219. https://doi.org/10.5194/angeo-33-1211-2015
Clark, G., Mauk, B. H., Haggerty, D., Paranicas, C., Kollmann, P., Rymer, A., Bunce, E. J., Cowley, S. W. H., Mitchell, D. G., Provan, G., Ebert, R. W., Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Kotsiaros, S., Kurth, W. S., Levin, S., McComas, D. J., Saur, J., & Valek, P. (2017). Energetic particle signatures of magnetic field-aligned potentials over Jupiter's polar regions. Geophysical Research Letters, 44, 8703–8711. https://doi.org/10.1002/2017gl074366
Clark, G., Tao, C., Mauk, B. H., Nichols, J., Saur, J., Bunce, E. J., Allegrini, F., Gladstone, R., Bagenal, F., Bolton, S., Bonfond, B., Connerney, J., Ebert, R. W., Gershman, D. J., Haggerty, D., Kimura, T., Kollmann, P., Kotsiaros, S., Kurth, W. S., Levin, S., McComas, D. J., Murakami, G., Paranicas, C., Rymer, A., & Valek, P. (2018). Precipitating electron energy flux and characteristic energies in Jupiter's main auroral region as measured by Juno/JEDI. Journal of Geophysical Research: Space Physics, 7554–7567. https://doi.org/10.1029/2018JA025639
Clarke, J. T., Ballester, G., Trauger, J., Ajello, J., Pryor, W., Tobiska, K., Connerney, J. E. P., Gladstone, G. R., Waite, J. H., Jaffel, L. B., & Gérard, J.-C. (1998). Hubble Space Telescope imaging of Jupiter's UV aurora during the Galileo orbiter mission. Journal of Geophysical Research, 103, 20,217–20,236. https://doi.org/10.1029/98JE01130
Clarke, J. T., Ballester, G. E., Trauger, J., Evans, R., Connerney, J. E. P., Stapelfeldt, K., Crisp, D., Feldman, P. D., Burrows, C. J., Casertano, S., Gallagher, J. S., Griffiths, R. E., Hester, J. J., Hoessel, J. G., Holtzman, J. A., Krist, J. E., Meadows, V., Mould, J. R., Scowen, P. A., Watson, A. M., & Westphal, J. A. (1996). Far-ultraviolet imaging of Jupiter's aurora and the Io “footprint”. Science, 274(5286), 404–409. https://doi.org/10.1126/science.274.5286.404
Connerney, J. E., Acuña, M. H., Ness, N. F., & Satoh, T. (1998). New models of Jupiter's magnetic field constrained by the Io flux tube footprint. Journal of Geophysical Research, 103, 11,929–11,939. https://doi.org/10.1029/97JA03726
Connerney, J. E. P., Adriani, A., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Cowley, S. W. H., Gerard, J.-C., Gladstone, G. R., Grodent, D., Hospodarsky, G., Jorgensen, J. L., Kurth, W. S., Levin, S. M., Mauk, B., McComas, D. J., Mura, A., Paranicas, C., Smith, E. J., Thorne, R. M., Valek, P., & Waite, J. (2017). Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 356(6340), 826–832. https://doi.org/10.1126/science.aam5928
Connerney, J. E. P., Açuna, M. H., & Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. Journal of Geophysical Research, 86, 8370–8384. https://doi.org/10.1029/JA086ia10p08370
Connerney, E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., Merayo, J. M. G., Herceg, M., Bloxham, J., Moore, K. M., Bolton, S. J., & Levin, S. M. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophysical Research Letters, 45, 2590–2596. https://doi.org/10.1002/2018gl077312
Coroniti, F. V., Scarf, F. L., Kennel, C. F., Kurth, W. S., & Gurnett, D. A. (1980). Detection of Jovian whistler mode chorus; Implications for the Io torus aurora. Geophysical Research Letters, 7, 45–48. https://doi.org/10.1029/GL007i001p00045
Cowley, S. W. H., & Bunce, E. J. (2001). Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system. Planetary and Space Science, 49, 1067. https://doi.org/10.1016/s0032-0633(00)00167-7
Cowley, S. W. H., Bunce, E. J., & Nichols, J. D. (2003). Origins of Jupiter's main oval auroral emissions. Journal of Geophysical Research, 108(A4), 8002. https://doi.org/10.1029/2002JA009329
Cowley, S. W. H., Provan, G., Bunce, E. J., & Nichols, J. D. (2017). Magnetosphere-ionosphere coupling at Jupiter: Expectations for Juno Perijove 1 from a steady state axisymmetric physical model. Geophysical Research Letters, 44, 4497–4505. https://doi.org/10.1002/2017GL073129
Dumont, M., Grodent, D., Radioti, A., Bonfond, B., & Gérard, J. C. (2014). Jupiter's equatorward auroral features: Possible signatures of magnetospheric injections. Journal of Geophysical Research: Space Physics, 119, 10,068–10,077. https://doi.org/10.1002/2014JA020527
Ebert, R. W., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., Clark, G., Gladstone, G. R., Hue, V., Kurth, W. S., Levin, S., Louarn, P., Mauk, B. H., McComas, D. J., Paranicas, C., Reno, M., Saur, J., Szalay, J. R., Thomsen, M. F., Valek, P., Weidner, S., & Wilson, R. J. (2017). Spatial distribution and properties of 0.1–100 keV electrons in Jupiter's polar auroral region. Geophysical Research Letters, 44, 9199–9207. https://doi.org/10.1002/2017GL075106
Ebert, R. W., Greathouse, T. K., Clark, G., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., Gladstone, G. R., Imai, M., Hue, V., Kurth, W. S., Levin, S., Louarn, P., Mauk, B. H., McComas, D. J., Paranicas, C., Szalay, J. R., Thomsen, M. F., Valek, P. W., & Wilson, R. J. (2019). Comparing electron energetics and UV brightness in Jupiter's northern polar region during Juno perijove 5. Geophysical Research Letters, 46(1), 19–27. https://doi.org/10.1029/2018GL081129
Gérard, J. C., Bonfond, B., Grodent, D., & Radioti, A. (2016). The color ratio-intensity relation in the Jovian aurora: Hubble observations of auroral components. Planetary and Space Science, 131, 14–23. https://doi.org/10.1016/j.pss.2016.06.004
Gérard, J.-C., Bonfond, B., Grodent, D., Radioti, A., Clarke, J. T., Gladstone, G. R., Waite, J. H., Bisikalo, D., & Shematovich, V. I. (2014). Mapping the electron energy in Jupiter's aurora: Hubble spectral observations. Journal of Geophysical Research: Space Physics, 119, 9072–9088. https://doi.org/10.1002/2014ja020514
Gérard, J.-C., Mura, A., Bonfond, B., Gladstone, G. R., Adriani, A., Hue, V., Dinelli, B. M., Greathouse, T. K., Grodent, D., Altieri, F., Moriconi, M. L., Radioti, A., Connerney, J. E. P., Bolton, S. J., & Levin, S. M. (2018). Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno's first perijove. Icarus, 312, 145–156. https://doi.org/10.1016/j.icarus.2018.04.020
Gérard, J. C., & Singh, V. (1982). A model of energy deposition of energetic electrons and EUV emission in the Jovian and Saturnian atmospheres and implications. Journal of Geophysical Research, 87, 4525–4532. https://doi.org/10.1029/JA087ia06p04525
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., et al. (2017). The ultraviolet spectrograph on NASA's Juno mission. Space Science Reviews, 213(1-4), 447–473. https://doi.org/10.1007/s11214-014-0040-z
Gladstone, G. R., Versteeg, M. H., Greathouse, T. K., Hue, V., Davis, M. W., Gérard, J.-C., Grodent, D. C., Bonfond, B., Nichols, J. D., Wilson, R. J., Hospodarsky, G. B., Bolton, S. J., Levin, S. M., Connerney, J. E. P., Adriani, A., Kurth, W. S., Mauk, B. H., Valek, P., McComas, D. J., Orton, G. S., & Bagenal, F. (2017). Juno-UVS approach observations of Jupiter's auroras. Geophysical Research Letters, 44, 7668–7675. https://doi.org/10.1002/2017GL073377
Greathouse, T. K., Gladstone, G. R., Davis, M. W., Slater, D. C., Versteeg, M. H., Persson, K. B., Walther, B. C., Winters, G. S., Persyn, S. C., & Eterno, J. S. (2013). Performance results from in-flight commissioning of the Juno ultraviolet spectrograph (Juno-UVS). In Proc. SPIE 8859, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XVIII, 88590T (26 September 2013). https://doi.org/10.1117/12.2024537
Grodent, D. (2015). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187, 23–50. https://doi.org/10.1007/s11214-014-0052-8
Grodent, D., Clarke, J. T., Kim, J., Waite, J. H. Jr., & Cowley, S. W. H. (2003). Jupiter's main auroral oval observed with HST-STIS. Journal of Geophysical Research, 108(A11). https://doi.org/10.1029/2003JA009921
Grodent, D., Clarke, J. T., Waite, J. H. Jr., Cowley, S. W. H., Gérard, J. C., & Kim, J. (2003). Jupiter's polar auroral emissions. Journal of Geophysical Research, 108(A10). https://doi.org/10.1029/2003JA010017
Grodent, D., Waite, J. H. Jr., & Gérard, J. C. (2001). A self-consistent model of the Jovian auroral thermal structure. Journal of Geophysical Research, 106, 12,933–12,952. https://doi.org/10.1029/2000JA900129
Gustin, J., Bonfond, B., Grodent, D., & Gérard, J. C. (2012). Conversion from HST ACS and STIS auroral counts into brightness, precipitated power, and radiated power for H2 giant planets. Journal of Geophysical Research, 117, A07316. https://doi.org/10.1029/2012JA017607
Gustin, J., Gérard, J.-C., Grodent, D., Gladstone, G. R., Clarke, J. T., Pryor, W. R., Dols, V., Bonfond, B., Radioti, A., Lamy, L., & Ajello, J. M. (2013). Effects of methane on giant planet's UV emissions and implications for the auroral characteristics. Journal of Molecular Spectroscopy, 291, 108–117. https://doi.org/10.1016/j.jms.2013.03.010
Gustin, J., Grodent, D., Ray, L. C., Bonfond, B., Bunce, E. J., Nichols, J. D., & Ozak, N. (2016). Characteristics of north Jovian aurora from STIS FUV spectral images. Icarus, 268, 215–241. https://doi.org/10.1016/j.icarus.2015.12.048
Hess, S. L., Delamere, P., Dols, V., Bonfond, B., & Swift, D. (2010). Power transmission and particle acceleration along the Io flux tube. Journal of Geophysical Research, 115(A6). https://doi.org/10.1029/2009JA014928
Hess, S. L. G., Bonfond, B., Zarka, P., & Grodent, D. (2011). Model of the Jovian magnetic field topology constrained by the Io auroral emissions. Journal of Geophysical Research, 116(A5). https://doi.org/10.1029/2010JA016262
Hill, T. W. (2001). The Jovian auroral oval. Journal of Geophysical Research, 106(A5), 8101–8107. https://doi.org/10.1029/2000JA000302
Hue, V., Gladstone, G. R., Greathouse, T. K., Kammer, J. A., Davis, M. W., Bonfond, B., Versteeg, M. H., Grodent, D. C., Gérard, J.-C., Bolton, S. J., Levin, S. M., & Byron, B. D. (2019). In-flight characterization and calibration of the Juno-Ultraviolet Spectrograph (Juno-UVS). The Astronomical Journal, 157, 90. https://doi.org/10.3847/1538-3881/aafb36
Knight, S. (1973). Parallel electric fields. Planetary and Space Science, 21, 741–750. https://doi.org/10.1016/0032-0633(73)90093-7
Kotsiaros, S., Connerney, J. E. P., Clark, G., Allegrini, F., Gladstone, G. R., Kurth, W. S., Mauk, B. H., Saur, J., Bunce, E. J., Gershman, D. J., Martos, Y. M., Greathouse, T. K., Bolton, S. J., & Levin, S. M. (2019). Birkeland currents in Jupiter's magnetosphere observed by the polar-orbiting Juno spacecraft. Nature Astronomy, 3, 904–909. https://doi.org/10.1038/s41550-019-0819-7
Li, W., Thorne, R. M., Ma, Q., Zhang, X.-J., Gladstone, G. R., Hue, V., Valek, P. W., Allegrini, F., Mauk, B. H., Clark, G., Kurth, W. S., Hospodarsky, G. B., Connerney, J. E. P., & Bolton, S. J. (2017). Understanding the origin of Jupiter's diffuse aurora using Juno's first perijove observations. Geophysical Research Letters, 44, 10,162–10,170. https://doi.org/10.1002/2017GL075545
Liu, X., Shemansky, D. E., Ahmed, S. M., James, G. K., & Ajello, J. M. (1998). Electron-impact excitation and emission cross sections of the H2 Lyman and Werner systems. Journal of Geophysical Research, 103(A11), 26,739–26,758. https://doi.org/10.1029/98JA02721
Mauk, B. H., Clarke, J. T., Grodent, D., Waite, J. H. Jr., Paranicas, C. P., & Williams, D. J. (2002). Transient aurora on Jupiter from injections of magnetospheric electrons. Nature, 415(6875), 1003. https://doi.org/10.1038/4151003a
Mauk, B. H., Haggerty, D. K., Jaskulek, S. E., Schlemm, C. E., Brown, L. E., Cooper, S. A., Gurnee, R. S., Hammock, C. M., Hayes, J. R., Ho, G. C., Hutcheson, J. C., Jacques, A. D., Kerem, S., Kim, C. K., Mitchell, D. G., Nelson, K. S., Paranicas, C. P., Paschalidis, N., Rossano, E., & Stokes, M. R. (2017). The Jupiter Energetic Particle Detector Instrument (JEDI) investigation for the Juno mission. Space Science Reviews, 213(1-4), 289–346. https://doi.org/10.1007/s11214-013-0025-3
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., Mitchell, D. G., Bolton, S. J., Levin, S. M., Adriani, A., Allegrini, F., Bagenal, F., Connerney, J. E. P., Gladstone, G. R., Kurth, W. S., McComas, D. J., Ranquist, D., Szalay, J. R., & Valek, P. (2017a). Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. Geophysical Research Letters, 44, 4410–4418. https://doi.org/10.1002/2016gl072286
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., Bolton, S. J., Levin, S. M., Adriani, A., Allegrini, F., Bagenal, F., Bonfond, B., Connerney, J. E. P., Gladstone, G. R., Kurth, W. S., McComas, D. J., & Valek, P. (2017b). Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature, 549(7670), 66–69. https://doi.org/10.1038/nature23648
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., Peachey, J. M., Bolton, S. J., Levin, S. M., Adriani, A., Allegrini, F., Bagenal, F., Bonfond, B., Connerney, J. E. P., Ebert, R. W., Gladstone, G. R., Kurth, W. S., McComas, D. J., Ranquist, D., & Valek, P. (2018). Diverse electron and ion acceleration characteristics observed over Jupiter's main aurora. Geophysical Research Letters, 45, 1277–1285. https://doi.org/10.1002/2017gl076901
Moriconi, M. L., Adriani, A., Dinelli, B. M., Fabiano, F., Altieri, F., Tosi, F., Filacchione, G., Migliorini, A., Gérard, J. C., Mura, A., Grassi, D., Sindoni, G., Piccioni, G., Noschese, R., Cicchetti, A., Bolton, S. J., Connerney, J. E. P., Atreya, S. K., Bagenal, F., Gladstone, G. R., Hansen, C., Kurth, W. S., Levin, S. M., Mauk, B. H., McComas, D. J., Turrini, D., Stefani, S., Olivieri, A., & Amoroso, M. (2017). Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. Geophysical Research Letters, 44, 4641–4648. https://doi.org/10.1002/2017gl073592
Paranicas, C., Mauk, B. H., Haggerty, D. K., Clark, G., Kollmann, P., Rymer, A. M., Bonfond, B., Dunn, W. R., Ebert, R. W., Gladstone, G. R., Roussos, E., Krupp, N., Bagenal, F., Levin, S. M., Connerney, J. E. P., & Bolton, S. J. (2018). Intervals of intense energetic electron beams over Jupiter's poles. Journal of Geophysical Research: Space Physics, 123, 1989–1999. https://doi.org/10.1002/2017JA025106
Radioti, A., Tomás, A. T., Grodent, D., Gérard, J.-C., Gustin, J., Bonford, B., Krupp, N., Woch, J., & Menietti, J. D. (2009). Equatorward diffuse auroral emissions at Jupiter: Simultaneous HST and Galileo observations. Geophysical Research Letters, 36, L03785. https://doi.org/10.1029/2009GL037857
Saur, J., Janser, S., Schreiner, A., Clark, G., Mauk, B. H., Kollmann, P., Ebert, R. W., Allegrini, F., Szalay, J. R., & Kotsiaros, S. (2018). Wave-particle interaction of Alfvén waves in Jupiter's magnetosphere: Auroral and magnetospheric particle acceleration. Journal of Geophysical Research: Space Physics, 123, 9560–9573. https://doi.org/10.1029/2018JA025948
Waite, J. H. Jr., Cravens, T. E., Kozyra, J., Nagy, A. F., Atreya, S. K., & Chen, R. H. (1983). Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere. Journal of Geophysical Research, 88(A8), 6143–6163. https://doi.org/10.1029/JA088ia08p06143
Waite, J. H., Gladstone, G. R., Lewis, W. S., Goldstein, R., McComas, D. J., Riley, P., Walker, R. J., Robertson, P., Desai, S., Clarke, J. T., & Young, D. T. (2001). An auroral flare at Jupiter. Nature, 410(6830), 787–789. https://doi.org/10.1038/35071018