van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 10.1038/nrm.2017.125 DOI: 10.1038/nrm.2017.125
McKelvey KJ, Powell KL, Ashton AW et al (2015) Exosomes: mechanisms of uptake. J Circ Biomark. 10.5772/61186 DOI: 10.5772/61186
Dreyer F, Baur A (2016) Biogenesis and functions of exosomes and extracellular vesicles. Methods Mol Biol 1448:201–216. 10.1007/978-1-4939-3753-0_15 DOI: 10.1007/978-1-4939-3753-0_15
Pérez-Boza J, Lion M, Struman I (2018) Exploring the RNA landscape of endothelial exosomes. RNA 24:423–435. 10.1261/rna.064352.117 DOI: 10.1261/rna.064352.117
Kalluri R, LeBleu VS (2017) Discovery of double-stranded genomic DNA in circulating exosomes. Cold Spring Harb Symp Quant Biol LXXXI:030932. https://doi.org/10.1101/sqb.2016.81.030932
Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 1841:108–120. 10.1016/j.bbalip.2013.10.004 DOI: 10.1016/j.bbalip.2013.10.004
Beach A, Zhang H-G, Ratajczak MZ, Kakar SS (2014) Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res 7:14. 10.1186/1757-2215-7-14 DOI: 10.1186/1757-2215-7-14
Li Q, Shao Y, Zhang X et al (2015) Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol J Int Soc Oncodevelopmental Biol Med 36:2007–2012. 10.1007/s13277-014-2807-y DOI: 10.1007/s13277-014-2807-y
Bovy N, Blomme B, Frères P et al (2015) Endothelial exosomes contribute to the antitumor response during breast cancer neoadjuvant chemotherapy via microRNA transfer. Oncotarget 6:10253–10266. https://doi.org/10.18632/oncotarget.3520
Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Investig 52:2745–2756. 10.1172/JCI107470 DOI: 10.1172/JCI107470
Théry C, Witwer KW, Aikawa E et al (2019) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 8:1535750. 10.1080/20013078.2018.1535750 DOI: 10.1080/20013078.2018.1535750
Ørom UA, Lund AH (2007) Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43:162–165. 10.1016/j.ymeth.2007.04.007 DOI: 10.1016/j.ymeth.2007.04.007
Betancur JG, Yoda M, Tomari Y (2012) miRNA-like duplexes as RNAi triggers with improved specificity. Front Genet 3:2008–2013. 10.3389/fgene.2012.00127 DOI: 10.3389/fgene.2012.00127
Rambout X, Detiffe C, Bruyr J et al (2016) The transcription factor ERG recruits CCR4-NOT to control mRNA decay and mitotic progression. Nat Struct Mol Biol 23:663–672. 10.1038/NSMB.3243 DOI: 10.1038/NSMB.3243
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408 DOI: 10.1006/meth.2001.1262
Tong L (2013) Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci C 70:863–891. 10.1007/s00018-012-1096-0 DOI: 10.1007/s00018-012-1096-0
Neill T, Jones HR, Crane-Smith Z et al (2013) Decorin evokes rapid secretion of thrombospondin-1 in basal breast carcinoma cells via inhibition of RhoA/ROCK1. FEBS J 280:2353–2368. 10.1111/febs.12148 DOI: 10.1111/febs.12148
Hellewell AL, Gong X, Schärich K et al (2015) Modulation of the extracellular matrix patterning of thrombospondins by actin dynamics and thrombospondin oligomer state. Biosci Rep. 10.1042/BSR20140168 DOI: 10.1042/BSR20140168
de Viana LS, Affonso RJ, Silva SRM, et al (2013) Relationship between the expression of the extracellular matrix genes SPARC, SPP1, FN1, ITGA5 and ITGAV and clinicopathological parameters of tumor progression and colorectal cancer dissemination. Oncology 84:81–91. 10.1159/000343436 DOI: 10.1159/000343436
Dave JM, Bayless KJ (2014) Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirc (New York, NY 1994) 21:333–344. https://doi.org/10.1111/micc.12111
Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186. 10.1146/annurev-biophys-042910-155359 DOI: 10.1146/annurev-biophys-042910-155359
Aukrust I, Hollås H, Strand E et al (2007) The mRNA-binding site of annexin A2 resides in helices C–D of its domain IV. J Mol Biol 368:1367–1378. 10.1016/j.jmb.2007.02.094 DOI: 10.1016/j.jmb.2007.02.094
Vedeler A, Hollås H, Grindheim AK, Raddum AM (2012) Multiple roles of annexin A2 in post-transcriptional regulation of gene expression. Curr Protein Pept Sci 13:401–412 DOI: 10.2174/138920312801619402
Luo M, Hajjar KA (2013) Annexin A2 system in human biology: cell surface and beyond. Semin Thromb Hemost 39:338–346. 10.1055/s-0033-1334143 DOI: 10.1055/s-0033-1334143
He Y, Smith R (2009) Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol Life Sci 66:1239–1256. 10.1007/s00018-008-8532-1 DOI: 10.1007/s00018-008-8532-1
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980. 10.1038/ncomms3980 DOI: 10.1038/ncomms3980
Santangelo L, Giurato G, Cicchini C et al (2016) The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep 17:799–808. 10.1016/j.celrep.2016.09.031 DOI: 10.1016/j.celrep.2016.09.031
Teng Y, Ren Y, Hu X et al (2017) MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun 8:1–16. 10.1038/ncomms14448 DOI: 10.1038/ncomms14448
Lu P, Li H, Li N et al (2017) MEX3C interacts with adaptor-related protein complex 2 and involves in miR-451a exosomal sorting. PLoS ONE 12:1–25. 10.1371/journal.pone.0185992 DOI: 10.1371/journal.pone.0185992
Shurtleff M, Karfilis KV, Temoche-Diaz M et al (2016) Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife 5:e19276. 10.1101/040238 DOI: 10.1101/040238
Chan Y-K, Zhang H, Liu P et al (2015) Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins. Int J Cancer 137:1830–1841. 10.1002/ijc.29562 DOI: 10.1002/ijc.29562
Tauro BJ, Mathias RA, Greening DW et al (2013) Oncogenic H-ras reprograms Madin–Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Mol Cell Proteomics MCP 12:2148–2159. 10.1074/mcp.M112.027086 DOI: 10.1074/mcp.M112.027086
Dudek AZ, Mahaseth H (2005) Circulating angiogenic cytokines in patients with advanced non-small cell lung cancer: correlation with treatment response and survival. Cancer Investig 23:193–200 DOI: 10.1081/CNV-200055949
Gonzalez FJ, Rueda A, Sevilla I et al (2004) Shift in the balance between circulating thrombospondin-1 and vascular endothelial growth factor in cancer patients: relationship to platelet a-granule content and primary activation. Int J Biol Markers 19:221–228. 10.5301/JBM.2008.1959 DOI: 10.5301/JBM.2008.1959
Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y (2009) Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15:195–206. 10.1016/j.ccr.2009.01.023 DOI: 10.1016/j.ccr.2009.01.023
Liu C-Y, Lin H-H, Tang M-J, Wang Y-K (2015) Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget 6:15966–15983 DOI: 10.18632/oncotarget.3862
Jeppesen DK, Nawrocki A, Jensen SG et al (2014) Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics 14:699–712. 10.1002/pmic.201300452 DOI: 10.1002/pmic.201300452
Challa AA, Stefanovic B (2011) A novel role of vimentin filaments: binding and stabilization of collagen mRNAs. Mol Cell Biol 31:3773–3789. 10.1128/MCB.05263-11 DOI: 10.1128/MCB.05263-11
Schmidt Y, Biniossek M, Stark GB et al (2015) Osteoblastic alkaline phosphatase mRNA is stabilized by binding to vimentin intermediary filaments. Biol Chem 396:253–260. 10.1515/hsz-2014-0274 DOI: 10.1515/hsz-2014-0274
Song KY, Choi HS, Law P-Y et al (2013) Vimentin interacts with the 5’-untranslated region of mouse mu opioid receptor (MOR) and is required for post-transcriptional regulation. RNA Biol 10:256–266. 10.4161/rna.23022 DOI: 10.4161/rna.23022
Chatterjee S, Panda AC, Berwal SK et al (2013) Vimentin is a component of a complex that binds to the 5′-UTR of human heme-regulated eIF2α kinase mRNA and regulates its translation. FEBS Lett 587:474–480. 10.1016/j.febslet.2013.01.013 DOI: 10.1016/j.febslet.2013.01.013
Mathivanan S, Fahner CJ, Reid GE, Simpson RJ (2012) ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 40:D1241–D1244. 10.1093/nar/gkr828 DOI: 10.1093/nar/gkr828
Koumangoye RB, Sakwe AM, Goodwin JS et al (2011) Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS ONE 6:e24234. 10.1371/journal.pone.0024234 DOI: 10.1371/journal.pone.0024234
Wang C-Y, Lin C-F (2014) Annexin A2: its molecular regulation and cellular expression in cancer development. Dis Markers. 10.1155/2014/308976 DOI: 10.1155/2014/308976
Wang T, Yuan J, Zhang J et al (2015) Anxa2 binds to STAT3 and promotes epithelial to mesenchymal transition in breast cancer cells. Oncotarget 6:30975–30992. https://doi.org/10.18632/oncotarget.5199
Zhang F, Zhang H, Wang Z et al (2014) P-glycoprotein associates with Anxa2 and promotes invasion in multidrug resistant breast cancer cells. Biochem Pharmacol 87:292–302. 10.1016/j.bcp.2013.11.003 DOI: 10.1016/j.bcp.2013.11.003
Maji S, Chaudhary P, Akopova I et al (2016) Exosomal annexin A2 promotes angiogenesis and breast cancer metastasis. Mol Cancer Res MCR. 10.1158/1541-7786.MCR-16-0163 DOI: 10.1158/1541-7786.MCR-16-0163
Ling Q, Jacovina AT, Deora A et al (2004) Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J Clin Investig 113:38–48. 10.1172/JCI19684 DOI: 10.1172/JCI19684
Sharma MR, Rothman V, Tuszynski GP, Sharma MC (2006) Antibody-directed targeting of angiostatin’s receptor annexin II inhibits Lewis Lung Carcinoma tumor growth via blocking of plasminogen activation: possible biochemical mechanism of angiostatin’s action. Exp Mol Pathol 81:136–145. 10.1016/j.yexmp.2006.03.002 DOI: 10.1016/j.yexmp.2006.03.002
Kwak H, Park MW, Jeong S (2011) Annexin A2 Binds RNA and reduces the frameshifting efficiency of infectious bronchitis virus. PLoS ONE 6:e24067. 10.1371/journal.pone.0024067 DOI: 10.1371/journal.pone.0024067
Hagiwara K, Katsuda T, Gailhouste L et al (2015) Commitment of Annexin A2 in recruitment of microRNAs into extracellular vesicles. FEBS Lett 589:4071–4078. 10.1016/j.febslet.2015.11.036 DOI: 10.1016/j.febslet.2015.11.036
Alarcón CR, Goodarzi H, Lee H et al (2015) HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162:1299–1308. 10.1016/j.cell.2015.08.011 DOI: 10.1016/j.cell.2015.08.011
Lan X, Yan J, Ren J, et al (2016) A novel long noncoding RNA Lnc-HC binds hnRNPA2B1 to regulate expressions of Cyp7a1 and Abca1 in hepatocytic cholesterol metabolism: hepatology, Vol. XX, No. X, 2015 Lan et al. Hepatology 64:58–72. https://doi.org/10.1002/hep.28391
Shilo A, Ben Hur V, Denichenko P et al (2014) Splicing factor hnRNP A2 activates the Ras-MAPK-ERK pathway by controlling A-Raf splicing in hepatocellular carcinoma development. RNA 20:505–515. 10.1261/rna.042259.113 DOI: 10.1261/rna.042259.113
Zhou Z-J, Dai Z, Zhou S-L et al (2014) HNRNPAB induces epithelial-mesenchymal transition and promotes metastasis of hepatocellular carcinoma by transcriptionally activating SNAIL. Cancer Res 74:2750–2762. 10.1158/0008-5472.CAN-13-2509 DOI: 10.1158/0008-5472.CAN-13-2509
Dowling P, Pollard D, Larkin A et al (2015) Abnormal levels of heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) in tumour tissue and blood samples from patients diagnosed with lung cancer. Mol Biosyst 11:743–752. 10.1039/c4mb00384e DOI: 10.1039/c4mb00384e
Santarosa M, Del Col L, Viel A et al (2010) BRCA1 modulates the expression of hnRNPA2B1 and KHSRP. Cell Cycle 9:4666–4673. 10.4161/cc.9.23.14022 DOI: 10.4161/cc.9.23.14022
Hu Y, Sun Z, Deng J et al (2017) Splicing factor hnRNPA2B1 contributes to tumorigenic potential of breast cancer cells through STAT3 and ERK1/2 signaling pathway. Tumour Biol J Int Soc Oncodevelopmental Biol Med 39:1010428317694318. 10.1177/1010428317694318 DOI: 10.1177/1010428317694318
Gu W-J, Liu H-L (2013) Induction of pancreatic cancer cell apoptosis, invasion, migration, and enhancement of chemotherapy sensitivity of gemcitabine, 5-FU, and oxaliplatin by hnRNP A2/B1 siRNA. Anticancer Drugs 24:1. 10.1097/CAD.0b013e3283608bc5 DOI: 10.1097/CAD.0b013e3283608bc5
Wang H, Liang L, Dong Q et al (2018) Long noncoding RNA miR503HG, a prognostic indicator, inhibits tumor metastasis by regulating the HNRNPA2B1/NF-κB pathway in hepatocellular carcinoma. Theranostics 8:2814–2829. 10.7150/thno.23012 DOI: 10.7150/thno.23012
Tchurikov NA, Kretova OV, Fedoseeva DM et al (2013) DNA double-strand breaks coupled with PARP1 and HNRNPA2B1 binding sites flank coordinately expressed domains in human chromosomes. PLoS Genet 9:e1003429. 10.1371/journal.pgen.1003429 DOI: 10.1371/journal.pgen.1003429