[en] The cryosphere, which comprises a large portion of Earth's surface, is rapidly changing as a consequence of global climate change. Ice, snow, and frozen ground in the polar and alpine regions of the planet are known to directly impact atmospheric composition, which for example is observed in the large influence of ice and snow on polar boundary layer chemistry. Atmospheric inputs to the cryosphere, including aerosols, nutrients, and contaminants, are also changing in the anthropocene thus driving cryosphere-atmosphere feedbacks whose understanding is crucial for understanding future climate. Here, we present the Cryosphere and ATmospheric Chemistry initiative (CATCH) which is focused on developing new multidisciplinary research approaches studying interactions of chemistry, biology, and physics within the coupled cryosphere – atmosphere system and their sensitivity to environmental change. We identify four key science areas: (1) micro-scale processes in snow and ice, (2) the coupled cryosphere-atmosphere system, (3) cryospheric change and feedbacks, and (4) improved decisions and stakeholder engagement. To pursue these goals CATCH will foster an international, multidisciplinary research community, shed light on new research needs, support the acquisition of new knowledge, train the next generation of leading scientists, and establish interactions between the science community and society.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Thomas, Jennie L.
Stutz, Jochen
Frey, Markus M.
Bartels-Rausch, Thorsten
Altieri, Katye
Baladima, Foteini
Browse, Jo
Dall'Osto, Manuel
Marelle, Louis
Mouginot, Jeremie
Murphy, Jennifer G.
Nomura, Daiki
Pratt, Kerri A.
Willis, Megan D.
Zieger, Paul
Abbatt, Jon
Douglas, Thomas A.
Facchini, Maria Cristina
France, James
Jones, Anna E.
Kim, Kitae
Matrai, Patricia A.
McNeill, V. Faye
Saiz-Lopez, Alfonso
Shepson, Paul
Steiner, Nadja
Law, Kathy S.
Arnold, Steve R.
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Abbatt, JPD, George, C, Melamed, M, Monks, PS, Pandis, SN and Rudich, Y. 2014. New directions: Fundamentals of atmospheric chemistry: Keeping a three-legged stool balanced. Atmos Environ 84: 390-391. DOI: https://doi.org/10.1016/j. atmosenv.2013.10.025
Abbatt, JPD, Leaitch, WR, Aliabadi, AA, Bertram, AK, Blanchet, JP, Boivin-Rioux, A, Bozem, H, Burkart, J, Chang, RYW, Charette, J, Chaubey, JP, Christensen, RJ, Cirisan, A, Collins, DB, Croft, B, Dionne, J, Evans, GJ, Fletcher, CG, Galí, M, Ghahremaninezhad, R, Girard, E, Gong, W, Gosselin, M, Gourdal, M, Hanna, SJ, Hayashida, H, Herber, AB, Hesaraki, S, Hoor, P, Huang, L, Hussherr, R, Irish, VE, Keita, SA, Kodros, JK, Köllner, F, Kolonjari, F, Kunkel, D, Ladino, LA, Law, K, Levasseur, M, Libois, Q, Liggio, J, Lizotte, M, Macdonald, KM, Mahmood, R, Martin, RV, Mason, RH, Miller, LA, Moravek, A, Mortenson, E, Mungall, EL, Murphy, JG, Namazi, M, Norman, AL, O'Neill, NT, Pierce, JR, Russell, LM, Schneider, J, Schulz, H, Sharma, S, Si, M, Staebler, RM, Steiner, NS, Thomas, JL, von Salzen, K, Wentzell, JJB, Willis, MD, Wentworth, GR, Xu, JW and Yakobi-Hancock, JD. 2019. Overview paper: New insights into aerosol and climate in the Arctic. Atmos Chem Phys 19(4): 2527-2560. https://www.atmos-chem-phys.net/19/2527/2019/. DOI: https://doi. org/10.5194/acp-19-2527-2019
Abbatt, JPD, Thomas, JL, Abrahamsson, K, Boxe C, Granfors, A, Jones, AE, King, MD, Saiz-Lopez, A, Shepson, PB, Sodeau, J, Toohey, DW, Toubin, C, von Glasow, R, Wren, SN and Yang, X. 2012. Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions. Atmos Chem Phys 12(14): 6237-6271. https://www.atmos-chem-phys.net/12/6237/2012/. DOI: https://doi.org/10.5194/acp-12-6237-2012
Abrahamsson, K, Granfors, A, Ahnoff, M, Cuevas, CA and Saiz-Lopez, A. 2018. Organic bromine compounds produced in sea ice in Antarctic winter. Nat Commun 9(1): 5291. DOI: https://doi.org/10.1038/ s41467-018-07062-8
Ammann, M, Artiglia, L, Bartels-Rausch, T, Faust, JA and House, JE. 2018. in Chapter 6 - X-Ray Excited Electron Spectroscopy to Study Gas-Liquid Interfaces of Atmospheric Relevance, 135-166. Elsevier. ISBN 978-0-12-813641-6. http://www.sciencedirect.com/ science/article/pii/B9780128136416000066. DOI: https://doi.org/10.1016/B978-0-12-813641-6. 00006-6
Amoroso, A, Domine, F, Esposito, G, Morin, S, Savarino, J, Nardino, M, Montagnoli, M, Bonneville, JM, Clement, JC, Ianniello, A and Beine, HJ. 2010. Microorganisms in Dry Polar Snow Are Involved in the Exchanges of Reactive Nitrogen Species with the Atmosphere. Environ Sci Technol 44(2): 714-719. PMID: 20000750. DOI: https://doi.org/10.1021/ es9027309
Anderson, P and Neff, W. 2008. Boundary layer physics over snow and ice. Atmos Chem Phys 8(13): 3563-3582. https://www.atmos-chem-phys.net/8/ 3563/2008/. DOI: https://doi.org/10.5194/acp-8-3563-2008
Angot, H, Dastoor, A, De Simone, F, Gårdfeldt, K, Gencarelli, CN, Hedgecock, IM, Langer, S, Magand, O, Mastromonaco, MN, Nordstrøm, C, Pfaffhuber, KA, Pirrone, N, Ryjkov, A, Selin, NE, Skov, H, Song, S, Sprovieri, F, Steffen, A, Toyota, K, Travnikov, O, Yang, X and Dommergue, A. 2016. Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models. Atmos Chem Phys 16(16): 10735-10763. https:// www.atmos-chem-phys.net/16/10735/2016/. DOI: https://doi.org/10.5194/acp-16-10735-2016
Ariya, PA, Dastoor, A, Nazarenko, Y and Amyot, M. 2018. Do snow and ice alter urban air quality? Atmos Env 186: 266-268. DOI: https://doi.org/10.1016/j. atmosenv.2018.05.028
Arnold, SR, Law, KS, Brock, CA, Thomas, JL, Starkweather, SM, von Salzen, K, Stohl, A, Sharma, S, Lund, MT, Flanner, MG, Petäjä, T, Tanimoto, H, Gamble, J, Dibb, JE, Melamed, M, Johnson, N, Fidel, M, Tynkkynen, V-P, Baklanov, A, Eckhardt, S, Monks, SA, Browse, J and Bozem, H. 2016. Arctic air pollution: Challenges and opportunities for the next decade. Elementa. DOI: https:// doi.org/10.12952/journal.elementa.000104
Assmy, P, Fernández-Méndez, M, Duarte, P, Meyer, A, Randelhoff, A, Mundy, CJ, Olsen, LM, Kauko, HM, Bailey, A, Chierici, M, Cohen, L, Doulgeris, AP, Ehn, JK, Fransson, A, Gerland, S, Hop, H, Hudson, SR, Hughes, N, Itkin, P, Johnsen, G, King, JA, Koch, BP, Koenig, Z, Kwasniewski, S, Laney, SR, Nicolaus, M, Pavlov, AK, Polashenski, CM, Provost, C, Rösel, A, Sandbu, M, Spreen, G, Smedsrud, LH, Sundfjord, A, Taskjelle, T, Tatarek, A, Wiktor, J, Wagner, PM, Wold, A, Steen, H and Granskog, MA. 2017. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci Rep 7: 40850. DOI: https:// doi.org/10.1038/srep40850
Barrie, LA, Bottenheim, JW, Schnell, RC, Crutzen, PJ and Rasmussen, RA. 1988. Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature 334(6178): 138-141. DOI: https://doi.org/10.1038/334138a0
Bartels-Rausch, T, Jacobi, HW, Kahan, TF, Thomas, JL, Thomson, ES, Abbatt, JPD, Ammann, M, Blackford, JR, Bluhm, H, Boxe, C, Domine, F, Frey, MM, Gladich, I, Guzmán, MI, Heger, D, Huthwelker, T, Klán, P, Kuhs, WF, Kuo, MH, Maus, S, Moussa, SG, McNeill, VF, Newberg, JT, Pettersson, JBC, Roeselová, M and Sodeau, JR. 2014. A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. Atmos Chem Phys 14(3): 1587-1633. https:// www.atmos-chem-phys.net/14/1587/2014/. DOI: https://doi.org/10.5194/acp-14-1587-2014
Benning, LG, Anesio, AM, Lutz, S and Tranter, M. 2014. Biological impact on Greenland's albedo. Nat Geosci 7(10): 691-691. DOI: https://doi.org/10.1038/ngeo 2260
Bintanja, R and Andry, O. 2017. Towards a rain-dominated Arctic. Nat Clim Change 7: 263. DOI: https:// doi.org/10.1038/nclimate3240
Bock, J, Savarino, J and Picard, G. 2016. Air-snow exchange of nitrate: A modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica. Atmos Chem Phys 16(19): 12531-12550. https://www.atmos-chem-phys.net/ 16/12531/2016/. DOI: https://doi.org/10. 5194/ acp-16-12531-2016
Bormann, KJ, Brown, RD, Derksen, C and Painter, TH. 2018. Estimating snow-cover trends from space. Nat Clim Change 8(11): 924-928. DOI: https://doi. org/10.1038/s41558-018-0318-3
Bourgeois, I, Savarino, J, Caillon, N, Angot, H, Barbero, A, Delbart, F, Voisin, D and Clément, JC. 2018. Tracing the Fate of Atmospheric Nitrate in a Subalpine Watershed Using Δ17O. Environ Sci Technol 52(10): 5561-5570. DOI: https://doi.org/10.1021/ acs.est.7b02395
Boy, M, Thomson, ES, Acosta Navarro, JC, Arnalds, O, Batchvarova, E, Bäck, J, Berninger, F, Bilde, M, Brasseur, Z, Dagsson-Waldhauserova, P, Castarède, D, Dalirian, M, de Leeuw, G, Dragosics, M, Duplissy, EM, Duplissy, J, Ekman, AML, Fang, K, Gallet, JC, Glasius, M, Gryning, SE, Grythe, H, Hansson, HC, Hansson, M, Isaksson, E, Iversen, T, Jonsdottir, I, Kasurinen, V, Kirkevåg, A, Korhola, A, Krejci, R, Kristjansson, JE, Lappalainen, HK, Lauri, A, Leppäranta, M, Lihavainen, H, Makkonen, R, Massling, A, Meinander, O, Nilsson, ED, Olafsson, H, Pettersson, JBC, Prisle, NL, Riipinen, I, Roldin, P, Ruppel, M, Salter, M, Sand, M, Seland, Ø, Seppä, H, Skov, H, Soares, J, Stohl, A, Ström, J, Svensson, J, Swietlicki, E, Tabakova, K, Thorsteinsson, T, Virkkula, A, Weyhenmeyer, GA, Wu, Y, Zieger, P and Kulmala, M. 2019. Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes. Atmos Chem Phys 19(3): 2015-2061. https://www.atmos-chem-phys. net/19/2015/2019/. DOI: https://doi.org/10.5194/ acp-19-2015-2019
Braune, BM, Outridge, PM, Fisk, AT, Muir, DCG, Helm, PA, Hobbs, K, Hoekstra, PF, Kuzyk, ZA, Kwan, M, Letcher, RJ, Lockhart, WL, Norstrom, RJ, Stern, GA and Stirling, I. 2005. Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: An overview of spatial and temporal trends. Sci Total Environ 351-352: 4-56. http://www.sciencedirect.com/science/article/ pii/S0048969705004389. DOI: https://doi.org/10. 1016/ j.scitotenv.2004.10.034
Browse, J, Carslaw, KS, Mann, GW, Birch, CE, Arnold, SR and Leck, C. 2014. The complex response of Arctic aerosol to sea-ice retreat. Atmos Chem Phys 14(14): 7543-7557. https://www.atmos-chem-phys. net/14/7543/2014/. DOI: https://doi.org/10. 5194/ acp-14-7543-2014
Burkart, J, Hodshire, AL, Mungall, EL, Pierce, JR, Collins, DB, Ladino, LA, Lee, AKY, Irish, V, Wentzell, JJB, Liggio, J, Papakyriakou, T, Murphy, J and Abbatt, J. 2017. Organic Condensation and Particle Growth to CCN Sizes in the Summertime Marine Arctic is Driven by Materials More Semivolatile than at Continental Sites. Geophys Res Lett 44(20): 10, 725-10, 734. ISSN 1944-8007. DOI: https://doi. org/10.1002/2017GL075671
Burkholder, JB, Abbatt, JP, Barnes, I, Roberts, JM, Melamed, ML, Ammann, M, Bertram, AK, Cappa, CD, Carlton, AG, Carpenter, LJ, Crowley, JN, Dubowski, Y, George, C, Heard, DE, Herrmann, H, Keutsch, FN, Kroll, JH, McNeill, VF, Ng, NL, Nizkorodov, SA, Orlando, JJ, Percival, CJ, Picquet-Varrault, B, Rudich, Y, Seakins, PW, Surratt, JD, Tanimoto, H, Thornton, JA, Tong, Z, Tyndall, GS, Wahner, A, Weschler, CJ, Wilson, KR and Ziemann, PJ. 2017. The essential role for laboratory studies in atmospheric chemistry. Environ Sci Technol 51(5): 2519-2528. DOI: https://doi. org/10.1021/acs.est.6b04947
Campbell, LM, Norstrom, RJ, Hobson, KA, Muir, DC, Backus, S and Fisk, AT. 2005. Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci Total Environ 351: 247-263. DOI: https://doi.org/10.1016/j. scitotenv.2005.02.043
Chang, RYW, Sjostedt, SJ, Pierce, JR, Papakyriakou, TN, Scarratt, MG, Michaud, S, Levasseur, M, Leaitch, WR and Abbatt, JP. 2011. Relating atmospheric and oceanic DMS levels to particle nucleation events in the Canadian Arctic. J Geophys Res 116(D17). DOI: https://doi.org/10.1029/2011JD015926
Crawford, JH, Davis, DD, Chen, G, Buhr, M, Oltmans, S, Weller, R, Mauldin, L, Eisele, F, Shetter, R, Lefer, B, Arimoto, R and Hogan, A. 2001. Evidence for photochemical production of ozone at the South Pole surface. Geophys Res Lett 28(19): 3641-3644. DOI: https://doi.org/10.1029/2001GL01 3055
Creamean, JM, Kirpes, RM, Pratt, KA, Spada, NJ, Maahn, M, de Boer, G, Schnell, RC and China, S. 2018. Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location. Atmos Chem Phys 18(24): 18023-18042. https://www.atmos-chem-phys.net/18/18023/2018/. DOI: https:// doi. org/10.5194/acp-18-18023-2018
Croft, B, Martin, RV, Leaitch, WR, Tunved, P, Breider, TJ, D'Andrea, SD and Pierce, JR. 2016. Processes controlling the annual cycle of Arctic aerosol number and size distributions. Atmos Chem Phys 16(6): 3665-3682. DOI: https://doi.org/10.5194/ acp-16-3665-2016
Dall'Osto, M, Beddows, DCS, Tunved, P, Krejci, R, Ström, J, Hansson, HC, Yoon, YJ, Park, KT, Becagli, S, Udisti, R, Onasch, T, O'Dowd, CD, Simó, R and Harrison, RM. 2017. Arctic sea ice melt leads to atmospheric new particle formation. Sci Rep 7(1): 3318. DOI: https://doi.org/10.1038/ s41598-017-03328-1
Dall'Osto, M, Geels, C, Beddows, DCS, Boertmann, D, Lange, R, Nojgaard, JK, Harrison, RM, Simo, R, Skov, H and Massling, A. 2018. Regions of open water and melting sea ice drive new particle formation in North East Greenland. Sci Rep 8(1): 6109. DOI: https://doi.org/10.1038/s41598-018-24426-8
Dietz, R, Outridge, PM and Hobson, KA. 2009. Anthropogenic contributions to mercury levels in present-day Arctic animals-A review. Sci Total Environ 407(24): 6120-6131. http://www.sciencedirect.com/science/ article/pii/S0048969709008043. DOI: https://doi. org/10.1016/j.scitotenv.2009.08.036
Domine, F, Bock, J, Voisin, D and Donaldson, DJ. 2013. Can We Model Snow Photochemistry? Problems with the Current Approaches. J Phys Chem A 117(23): 4733-4749. DOI: https://doi.org/10. 1021/jp3123314
Dominé, F and Shepson, PB. 2002. Air-snow interactions and atmospheric chemistry. Science 297(5586): 1506-1510. DOI: https://doi.org/10.1126/science. 1074610
Domine, F, Sparapani, R, Ianniello, A and Beine, HJ. 2004. The origin of sea salt in snow on Arctic sea ice and in coastal regions. Atmos Chem Phys 4(9/10): 2259-2271. https://www.atmos-chem-phys.net/4/ 2259/2004/. DOI: https://doi.org/10.5194/acp-4-2259-2004
Douglas, TA and Blum, JD. 2019. Mercury Isotopes Reveal Atmospheric Gaseous Mercury Deposition Directly to the Arctic Coastal Snowpack. Environ Sci Technol Lett 6(4): 235-242. DOI: https://doi.org/10.1021/ acs.estlett.9b00131
Douglas, TA, Sturm, M, Blum, JD, Polashenski, C, Stuefer, S, Hiemstra, C, Steffen, A, Filhol, S and Prevost, R. 2017. A Pulse of Mercury and Major Ions in Snowmelt Runoff from a Small Arctic Alaska Watershed. Environ Sci Technol 51(19): 11145-11155. DOI: https://doi.org/10.1021/acs. est.7b03683
Eckhardt, S, Quennehen, B, Olivie, DJL, Berntsen, TK, Cherian, R, Christensen, JH, Collins, W, Crepinsek, S, Daskalakis, N, Flanner, M, Herber, A, Heyes, C, Hodnebrog, O, Huang, L, Kanakidou, M, Klimont, Z, Langner, J, Law, KS, Lund, MT, Mahmood, R, Massling, A, Myriokefalitakis, S, Nielsen, IE, Nojgaard, JK, Quaas, J, Quinn, PK, Raut, JC, Rumbold, ST, Schulz, M, Sharma, S, Skeie, RB, Skov, H, Uttal, T, von Salzen, K and Stohl, A. 2015. Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set. Atmos Chem Phys 15(16): 9413-9433. DOI: https:// doi.org/10.5194/acp-15-9413-2015
Edwards, PM, Brown, SS, Roberts, JM, Ahmadov, R, Banta, RM, deGouw, JA, Dubé, WP, Field, RA, Flynn, JH, Gilman, JB, Graus, M, Helmig, D, Koss, A, Langford, AO, Lefer, BL, Lerner, BM, Li, R, Li, SM, McKeen, SA, Murphy, SM, Parrish, DD, Senff, CJ, Soltis, J, Stutz, J, Sweeney, C, Thompson, CR, Trainer, MK, Tsai, C, Veres, PR, Washenfelder, RA, Warneke, C, Wild, RJ, Young, CJ, Yuan, B and Zamora, R. 2014. High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature 514: 351. DOI: https://doi.org/10.1038/ nature13767
Eichler, J, Kleitz, I, Bayer-Giraldi, M, Jansen, D, Kipfstuhl, S, Shigeyama, W, Weikusat, C and Weikusat, I. 2017. Location and distribution of micro-inclusions in the edml and neem ice cores using optical microscopy and in situ raman spectroscopy. Cryosphere 11(3): 1075-1090. DOI: https:// doi.org/10.5194/tc-11-1075-2017
Erbland, J, Vicars, WC, Savarino, J, Morin, S, Frey, MM, Frosini, D, Vince, E and Martins, JMF. 2013. Air-snow transfer of nitrate on the East Antarctic Plateau - Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer. Atmos Chem Phys 13(13): 6403-6419. https://www.atmos-chem-phys.net/13/6403/2013/. DOI: https://doi. org/10.5194/acp-13-6403-2013
Falk, S and Sinnhuber, BM. 2018. Polar boundary layer bromine explosion and ozone depletion events in the chemistry-climate model EMAC v2.52: Implementation and evaluation of AirSnow algorithm. Geosci Model Dev 11(3): 1115-1131. https://www. geosci-model-dev.net/11/1115/2018/. DOI: https:// doi.org/10.5194/gmd-11-1115-2018
Fort, J, Grémillet, D, Traisnel, G, Amélineau, F and Bustamante, P. 2016. Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning? Environ Pollut 211: 382-388. http://www.sciencedirect. com/science/article/pii/S026974911530275X. DOI: https://doi.org/10.1016/j.envpol.2015.12.061
Frey, MM, Norris, SJ, Brooks, IM, Anderson, PS, Nishimura, K, Yang, X, Jones, AE, Nerentorp Mastromonaco, MG, Jones, DH and Wolff, EW. 2019. First direct observation of sea salt aerosol production from blowing snow above sea ice. Atmos Chem Phys Discus 2019: 1-53. https://www. atmos-chem-phys-discuss.net/acp-2019-259/. DOI: https://doi.org/10.5194/acp-2019-259
Frey, MM, Roscoe, HK, Kukui, A, Savarino, J, France, JL, King, MD, Legrand, M and Preunkert, S. 2015. Atmospheric nitrogen oxides (NO and NO2) at Dome C, East Antarctica, during the OPALE campaign. Atmos Chem Phys 15(14): 7859-7875. https:// www.atmos-chem-phys.net/15/7859/2015/. DOI: https://doi.org/10.5194/acp-15-7859-2015
Gabric, A, Matrai, P, Jones, G and Middleton, J. 2018. The Nexus between Sea Ice and Polar Emissions of Marine Biogenic Aerosols. Bull Am Meteorol Soc 99(1): 61-81. DOI: https://doi.org/10.1175/ BAMS-D-16-0254.1
Giamarelou, M, Eleftheriadis, K, Nyeki, S, Tunved, P, Torseth, K and Biskos, G. 2016. Indirect evidence of the composition of nucleation mode atmospheric particles in the high Arctic. J Geophys Res 121(2): 965-975. DOI: https://doi.org/10. 1002/ 2015JD023646
Gilgen, A, Huang, WTK, Ickes, L, Neubauer, D and Lohmann, U. 2018. How important are future marine and shipping aerosol emissions in a warming Arctic summer and autumn? Atmos Chem Phys 18(14): 10521-10555. https://www.atmos-chem-phys.net/18/10521/2018/. DOI: https://doi.org/10. 5194/acp-18-10521-2018
Giordano, MR, Kalnajs, LE, Goetz, JD, Avery, AM, Katz, E, May, NW, Leemon, A, Mattson, C, Pratt, KA and DeCarlo, PF. 2018. The importance of blowing snow to halogen-containing aerosol in coastal Antarctica: Influence of source region versus wind speed. Atmos Chem Phys 18(22): 16689-16711. https:// www.atmos-chem-phys.net/18/16689/2018/. DOI: https://doi.org/10.5194/acp-18-16689-2018
Graham, RM, Itkin, P, Meyer, A, Sundfjord, A, Spreen, G, Smedsrud, LH, Liston, GE, Cheng, B, Cohen, L, Divine, D, Fer, I, Fransson, A, Gerland, S, Haapala, J, Hudson, SR, Johansson, AM, King, J, Merkouriadi, I, Peterson, AK, Provost, C, Randelhoff, A, Rinke, A, Rösel, A, Sennéchael, N, Walden, VP, Duarte, P, Assmy, P, Steen, H and Granskog, MA. 2019. Winter storms accelerate the demise of sea ice in the Atlantic sector of the Arctic Ocean. Sci Rep 9(1): 9222. DOI: https://doi. org/10.1038/s41598-019-45574-5
Grannas, AM, Bogdal, C, Hageman, KJ, Halsall, C, Harner, T, Hung, H, Kallenborn, R, Klán, P, Klánová, J, Macdonald, RW, Meyer, T and Wania, F. 2013. The role of the global cryosphere in the fate of organic contaminants. Atmos Chem Phys 13(6): 3271-3305. ISSN 1680-7324. DOI: https://doi. org/10.5194/acp-13-3271-2013
Grannas, AM, Jones, AE, Dibb, J, Ammann, M, Anastasio, C, Beine, HJ, Bergin, M, Bottenheim, J, Boxe, CS, Carver, G, Chen, G, Crawford, JH, Dominé, F, Frey, MM, Guzmán, MI, Heard, DE, Helmig, D, Hoffmann, MR, Honrath, RE, Huey, LG, Hutterli, M, Jacobi, HW, Klán, P, Lefer, B, McConnell, J, Plane, J, Sander, R, Savarino, J, Shepson, PB, Simpson, WR, Sodeau, JR, von Glasow, R, Weller, R, Wolff, EW and Zhu, T. 2007. An overview of snow photochemistry: Evidence, mechanisms and impacts. Atmos Chem Phys 7(16): 4329-4373. https://www. atmos-chem-phys.net/7/4329/2007/. DOI: https:// doi.org/10.5194/acp-7-4329-2007
Granskog, MA, Fer, I, Rinke, A and Steen, H. 2018. Atmosphere-Ice-Ocean-Ecosystem Processes in a Thinner Arctic Sea Ice Regime: The Norwegian Young Sea ICE (N-ICE2015) Expedition. J Geophys Res 123(3): 1586-1594. DOI: https://doi.org/10. 1002/2017JC013328
Grieger, B. 2019. The Quincuncial Adaptive Closed Kohonen (QuACK) map for the irregular shaped comet 67P/Churyumov-Gerasimenko. Astron Astrophys. DOI: https://doi.org/10.1051/ 0004-6361/ 201834841
Heimbürger, LE, Sonke, JE, Cossa, D, Point, D, Lagane, C, Laffont, L, Galfond, BT, Nicolaus, M, Rabe, B and Van Der Loeff, MR. 2015. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean. Sci Rep 5: 10318. DOI: https:// doi.org/10.1038/srep10318
Heintzenberg, J, Leck, C and Tunved, P. 2015. Potential source regions and processes of aerosol in the summer Arctic. Atmos Chem Phys 15(11): 6487-6502. https://www.atmos-chem-phys.net/ 15/6487/ 2015/. DOI: https://doi.org/10.5194/ acp-15-6487-2015
Helmig, D, Boylan, P, Johnson, B, Oltmans, S, Fairall, C, Staebler, R, Weinheimer, A, Orlando, J, Knapp, DJ, Montzka, DD, Flocke, F, Frieß, U, Sihler, H and Shepson, PB. 2012. Ozone dynamics and snow-atmosphere exchanges during ozone depletion events at Barrow, Alaska. J Geophys Res 117(D20). DOI: https://doi.org/10. 1029/2012JD017531
Helmig, D, Johnson, B, Oltmans, SJ, Neff, W, Eisele, F and Davis, DD. 2008. Elevated ozone in the boundary layer at South Pole. Atmos Env 42(12): 2788-2803. ISSN 1352-2310. Antarctic Tropospheric Chemistry Investigation (ANTCI) 2003. http://www.sciencedirect.com/science/article/ pii/S1352231006012660. DOI: https://doi.org/10. 1016/j.atmosenv.2006.12.032
Honrath, R, Peterson, MC, Guo, S, Dibb, JE, Shepson, P and Campbell, B. 1999. Evidence of NOx production within or upon ice particles in the Greenland snowpack. Geophys Res Lett 26(6): 695-698. DOI: https://doi.org/10.1029/1999GL900077
Hullar, T and Anastasio, C. 2016. Direct visualization of solute locations in laboratory ice samples. Cryosphere 10(5): 2057-2068. https://www.the-cryosphere.net/10/2057/2016/. DOI: https://doi. org/10.5194/tc-10-2057-2016
Hullar, T, Magadia, D and Anastasio, C. 2018. Photodegradation rate constants for anthracene and pyrene are similar in/on ice and in aqueous solution. Environ Sci Technol. DOI: https://doi.org/10.1021/ acs.est.8b02350
Hutterli, MA, McConnell, JR, Stewart, RW, Jacobi, HW and Bales, RC. 2001. Impact of temperature-driven cycling of hydrogen peroxide (H2O2) between air and snow on the planetary boundary layer. J Geophys Res 106(D14): 15395-15404. DOI: https:// doi.org/10.1029/2001JD900102
Huwald, H, Selker, JS, Tyler, SW, Calaf, M, van de Giesen, NC and Parlange, MB. 2012. Carbon monoxide as a tracer of gas transport in snow and other natural porous media. Geophys Res Lett 39(2). DOI: https://doi.org/10.1029/2011GL050247
Hyder, P, Edwards, JM, Allan, RP, Hewitt, HT, Bracegirdle, TJ, Gregory, JM, Wood, RA, Meijers, AJS, Mulcahy, J, Field, P, Furtado, K, Bodas-Salcedo, A, Williams, KD, Copsey, D, Josey, SA, Liu, C, Roberts, CD, Sanchez, C, Ridley, J, Thorpe, L, Hardiman, SC, Mayer, M, Berry, DI and Belcher, SE. 2018. Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nat Commun 9(1): 3625. DOI: https://doi. org/10.1038/s41467-018-05634-2
Irish, VE, Hanna, SJ, Willis, MD, China, S, Thomas, JL, Wentzell, JJB, Cirisan, A, Si, M, Leaitch, WR, Murphy, JG, Abbatt, JPD, Laskin, A, Girard, E and Bertram, AK. 2019. Ice nucleating particles in the marine boundary layer in the Canadian Arctic during summer 2014. Atmos Chem Phys 19(2): 1027-1039. https://www.atmos-chem-phys. net/19/1027/2019/. DOI: https://doi.org/10.5194/ acp-19-1027-2019
Jones, AE, Brough, N, Anderson, PS and Wolff, EW. 2014. HO2NO2 and HNO3 in the coastal Antarctic winter night: A "lab-in-the-field" experiment. Atmos Chem Phys 14(21): 11843-11851. https:// www.atmos-chem-phys.net/14/11843/2014/. DOI: https://doi.org/10.5194/acp-14-11843-2014
Jones, AE, Weller, R, Anderson, PS, Jacobi, HW, Wolff, EW, Schrems, O and Miller, H. 2001. Measurements of NOx emissions from the Antarctic snowpack. Geophys Res Lett 28(8): 1499-1502. DOI: https://doi.org/10.1029/2000GL011956
Jones, AE, Weller, R, Wolff, EW and Jacobi, HW. 2000. Speciation and rate of photochemical NO and NO2 production in Antarctic snow. Geophys Res Lett 27(3): 345-348. DOI: https://doi.org/10. 1029/1999GL010885
Kahan, TF and Donaldson, DJ. 2008. Heterogeneous ozonation kinetics of phenanthrene at the air- ice interface. Environ Res Lett 3(4): 045006. DOI: https://doi.org/10.1088/1748-9326/3/4/045006
Kim, MJ, Novak, GA, Zoerb, MC, Yang, M, Blomquist, BW, Huebert, BJ, Cappa, CD and Bertram, TH. 2017. Air-sea exchange of biogenic volatile organic compounds and the impact on aerosol particle size distributions. Geophys Res Lett 44(8): 3887-3896. DOI: https://doi.org/10.1002/2017GL072975
Kong, X, Waldner, A, Orlando, F, Artiglia, L, Huthwelker, T, Ammann, M and Bartels-Rausch, T. 2017. Coexistence of Physisorbed and Solvated HCl at Warm Ice Surfaces. J Phys Chem Lett, 4757-4762. http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.7b01573. DOI: https://doi.org/10.1021/acs.jpclett. 7b01573
Krepelova, A, Bartels-Rausch, T, Brown, MA, Bluhm, H and Ammann, M. 2013. Adsorption of Acetic Acid on Ice Studied by Ambient-Pressure XPS and Partial-Electron-Yield NEXAFS Spectroscopy at 230-240 K. J Phys Chem A 117(2): 401-409. DOI: https://doi.org/10.1021/jp3102332
Kunasek, S, Alexander, B, Steig, E, Sofen, E, Jackson, T, Thiemens, M, McConnell, J, Gleason, D and Amos, H. 2010. Sulfate sources and oxidation chemistry over the past 230 years from sulfur and oxygen isotopes of sulfate in aWest Antarctic ice core. J Geophys Res 115(D18). DOI: https://doi. org/10.1029/2010JD013846
Kwok, KY, Yamazaki, E, Yamashita, N, Taniyasu, S, Murphy, MB, Horii, Y, Petrick, G, Kallerborn, R, Kannan, K, Murano, K and Lam, PKS. 2013. Transport of Perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: Implications for sources. Sci Total Environ 447: 46-55. http://www.sciencedirect.com/science/article/ pii/S0048969712013915. DOI: https://doi.org/10. 1016/j.scitotenv.2012.10.091
Larose, C, Dommergue, A and Vogel, TM. 2013. Microbial nitrogen cycling in Arctic snowpacks. Env Res Lett 8(3): 035004. DOI: https://doi.org/ 10.1088/1748-9326/8/3/035004
Leck, C and Bigg, EK. 2005. Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus B 57(4): 305-316. DOI: https://doi.org/10.1111/ j.1600-0889.2005.00148.x
Leck, C and Svensson, E. 2015. Importance of aerosol composition and mixing state for cloud droplet activation over the Arctic pack ice in summer. Atmos Chem Phys 15(5): 2545-2568. https://www.atmos-chem-phys.net/15/2545/2015/. DOI: https://doi. org/10.5194/acp-15-2545-2015
Letcher, RJ, Bustnes, JO, Dietz, R, Jenssen, BM, Jørgensen, EH, Sonne, C, Verreault, J, Vijayan, MM and Gabrielsen, GW. 2010. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Sci Total Environ 408(15): 2995-3043. http://www.sciencedirect. com/science/article/pii/S0048969709010195. DOI: https://doi.org/10.1016/j.scitotenv.2009.10.038
Levasseur, M, Gosselin, M and Michaud, S. 1994. A new source of dimethylsulfide (DMS) for the arctic atmosphere: Ice diatoms. Marine Biology 121(2): 381-387. DOI: https://doi.org/10.1007/BF00346748
Lindsay, R and Schweiger, A. 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere 9(1): 269-283. https://www.the-cryosphere.net/9/269/2015/. DOI: https://doi.org/10.5194/tc-9-269-2015
Liu, Y, Key, JR, Liu, Z, Wang, X and Vavrus, SJ. 2012. A cloudier Arctic expected with diminishing sea ice. Geophys Res Lett 39(5): L05705. DOI: https://doi. org/10.1029/2012GL051251
Mauritsen, T, Sedlar, J, Tjernström, M, Leck, C, Martin, M, Shupe, M, Sjogren, S, Sierau, B, Persson, POG, Brooks, IM and Swietlicki, E. 2011. An Arctic CCN-limited cloud-aerosol regime. Atmos Chem Phys 11(1): 165-173. https://www.atmos-chem-phys. net/11/165/2011/. DOI: https://doi.org/10.5194/ acp-11-165-2011
Mayfield, JA and Fochesatto, GJ. 2012. The Layered Structure of the Winter Atmospheric Boundary Layer in the Interior of Alaska. J Appl Meteorol Climatol 52(4): 953-973. DOI: https://doi.org/10.1175/ JAMC-D-12-01.1
McCluskey, CS, Hill, TCJ, Humphries, RS, Rauker, AM, Moreau, S, Strutton, PG, Chambers, SD, Williams, AG, McRobert, I, Ward, J, Keywood, MD, Harnwell, J, Ponsonby, W, Loh, ZM, Krummel, PB, Protat, A, Kreidenweis, SM and DeMott, PJ. 2018. Observations of ice nucleating particles over Southern Ocean waters. Geophys Res Lett 45(21): 11-989. DOI: https://doi.org/ 10.1029/2018GL079981
McFall, AS, Edwards, KC and Anastasio, C. 2018. Nitrate photochemistry at the air-ice interface and in other ice reservoirs. Environ Sci Technol 52(10): 5710-5717. DOI: https://doi.org/10.1021/acs.est. 8b00095
McNeill, VF, Grannas, AM, Abbatt, JPD, Ammann, M, Ariya, P, Bartels-Rausch, T, Domine, F, Donaldson, DJ, Guzman, MI, Heger, D, Kahan, TF, Klán, P, Masclin, S, Toubin, C and Voisin, D. 2012. Organics in environmental ices: sources, chemistry, and impacts. Atmos Chem Phys 12(20): 9653-9678. https://www.atmos-chem-phys.net/12/9653/2012/ . DOI: https://doi.org/10.5194/acp-12-9653-2012
Meier, WN, Hovelsrud, GK, van Oort, BE, Key, JR, Kovacs, KM, Michel, C, Haas, C, Granskog, MA, Gerland, S, Perovich, DK, Makshtas, A and Reist, JD. 2014. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev Geophys 52(3): 185-217. DOI: https://doi.org/10.1002/ 2013RG000431
Miller, LA, Domine, F, Frey, MM and Trombotto Liaudat D. In press (accepted 7.11.19). In: Shepson, P and Domine, F (eds.), Chemistry in the Cryosphere, Advances in Atmospheric Chemistry, American Chemical Society. The Future? Big Questions about Feedbacks between Anthropogenic Change in the Cryosphere and Atmospheric Chemistry.
Monks, SA, Arnold, SR, Emmons, LK, Law, KS, Turquety, S, Duncan, BN, Flemming, J, Huijnen, V, Tilmes, S, Langner, J, Mao, J, Long, Y, Thomas, JL, Steenrod, SD, Raut, JC, Wilson, C, Chipperfield, MP, Diskin, GS, Weinheimer, A, Schlager, H and Ancellet, G. 2015. Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic. Atmos Chem Phys 15(6): 3575-3603. DOI: https:// doi.org/10.5194/acp-15-3575-2015
Moore, CW, Obrist, D, Steffen, A, Staebler, RM, Douglas, TA, Richter, A and Nghiem, SV. 2014. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice. Nature 506: 81. DOI: https://doi.org/10.1038/ nature12924
Morenz, KJ and Donaldson, DJ. 2017. Chemical morphology of frozen mixed nitratesalt solutions. J Phys Chem A 121(10): 2166-2171. DOI: https://doi. org/10.1021/acs.jpca.6b12608
Morrison, AL, Kay, JE, Chepfer, H, Guzman, R and Yettella, V. 2018. Isolating the Liquid Cloud Response to Recent Arctic Sea Ice Variability Using Spaceborne Lidar Observations. J Geophys Res 123(1): 473-490. DOI: https://doi.org/10.1002/2017JD027248
Mungall, EL, Abbatt, JPD, Wentzell, JJB, Lee, AKY, Thomas, JL, Blais, M, Gosselin, M, Miller, LA, Papakyriakou, T, Willis, MD and Liggio, J. 2017. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer. Proc Natl Acad Sci USA 114(24): 6203-6208. ISSN 0027-8424. https://www.pnas. org/content/114/24/6203. DOI: https://doi.org/ 10.1073/pnas.1620571114
Mungall, EL, Croft, B, Lizotte, M, Thomas, JL, Murphy, JG, Levasseur, M, Martin, RV, Wentzell, JJB, Liggio, J and Abbatt, JPD. 2016. Dimethyl sulfide in the summertime Arctic atmosphere: Measurements and source sensitivity simulations. Atmos Chem Phys 16(11): 6665-6680. https://www.atmos-chem-phys.net/16/6665/2016/. DOI: https://doi. org/10.5194/acp-16-6665-2016
Murray, KA, Kramer, LJ, Doskey, PV, Ganzeveld, L, Seok, B, Dam, BV and Helmig, D. 2015. Dynamics of ozone and nitrogen oxides at Summit, Greenland. II. Simulating snowpack chemistry during a spring high ozone event with a 1-D process-scale model. Atmos Environ 117: 110-123. ISSN 1352-2310. http://www.sciencedirect.com/science/article/ pii/S135223101530203X. DOI: https://doi.org/ 10.1016/j.atmosenv.2015.07.004
National Snow and Ice Data Center - a. 2019. Facts about glaciers. https://nsidc.org/cryosphere/glaciers/quickfacts.html.
National Snow and Ice Data Center - b. 2019. Snow and Climate. https://nsidc.org/cryosphere/snow/ climate.html.
Nicholes, MJ, Williamson, CJ, Tranter, M, Holland, A, Poniecka, E, Yallop ML, Bloom Group, TB, Anesio, A, Tranter, M, Anesio, A, Yallop, M, Williamson, C, Poniecka, E, Nicholes, M, Holland, A, Benning, L, McQuaid, J, Lutz, S, Mc-Cutcheon, J, Hodson, A, Hanna, E, Irvine-Fynn, T, Cook, J, Bamber, J, Tedstone, A, Box, J and Stibal, M. 2019. Bacterial Dynamics in Supraglacial Habitats of the Greenland Ice Sheet. Front Microbiol 10: 1366. ISSN 1664-302X. https://www.frontiersin.org/article/10.3389/fmicb.2019.01366. DOI: https://doi. org/10.3389/fmicb.2019.01366
Obbard, RW, Troderman, G and Baker, I. 2009. Imaging brine and air inclusions in sea ice using micro-X-ray computed tomography. J Glaciol 55(194): 1113-1115. DOI: https://doi. org/10.3189/002214309790794814
Obrist, D, Agnan, Y, Jiskra, M, Olson, CL, Colegrove, DP, Hueber, J, Moore, CW, Sonke, JE and Helmig, D. 2017. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547: 201. DOI: https://doi.org/10.1038/ nature22997
Oltmans, SJ, Johnson, BJ and Harris, JM. 2012. Springtime boundary layer ozone depletion at Barrow, Alaska: Meteorological influence, year-to-year variation, and long-term change. J Geophys Res 117(D14). DOI: https://doi.org/10.1029/2011JD016889
Orellana, MV, Matrai, PA, Leck, C, Rauschenberg, CD, Lee, AM and Coz, E. 2011. Marine microgels as a source of cloud condensation nuclei in the high Arctic. Proc Natl Acad Sci USA 108(33): 13612-13617. DOI: https://doi.org/10.1073/pnas. 1102457108
Park, KT, Jang, S, Lee, K, Yoon, YJ, Kim, MS, Park, K, Cho, HJ, Kang, JH, Udisti, R, Lee, BY and Shin, KH. 2017. Observational evidence for the formation of DMS-derived aerosols during Arctic phytoplankton blooms. Atmos Chem Phys 17(15): 9665-9675. DOI: https://doi.org/10.5194/acp-17-9665-2017
Peterson, PK, Pöhler, D, Sihler, H, Zielcke, J, General, S, Frieß, U, Platt, U, Simpson, WR, Nghiem, SV, Shepson, PB, Stirm, BH, Dhaniyala, S, Wagner, T, Caulton, DR, Fuentes, JD and Pratt, KA. 2017. Observations of bromine monoxide transport in the Arctic sustained on aerosol particles. Atmos Chem Phys 17(12): 7567-7579. https://www.atmos-chem-phys.net/17/7567/2017/. DOI: https://doi. org/10.5194/acp-17-7567-2017
Petroff, A and Zhang, L. 2010. Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models. Geosci Model Dev 3(2): 753-769. https://www.geosci-model-dev.net/3/753/2010/. DOI: https://doi. org/10.5194/gmd-3-753-2010
Pratt, KA, Custard, KD, Shepson, PB, Douglas, TA, Pöhler, D, General, S, Zielcke, J, Simpson, WR, Platt, U, Tanner, DJ, Gregory Huey, L, Carlsen, M and Stirm, BH. 2013. Photochemical production of molecular bromine in Arctic surface snowpacks. Nat Geosci 6: 351. DOI: https://doi.org/10.1038/ ngeo1779
Qi, L, Li, Q, Henze, DK, Tseng, HL and He, C. 2017. Sources of springtime surface black carbon in the Arctic: An adjoint analysis for April 2008. Atmos Chem Phys 17(15): 9697-9716. https://www.atmos-chem-phys.net/17/9697/2017/. DOI: https://doi. org/10.5194/acp-17-9697-2017
Raso, ARW, Custard, KD, May, NW, Tanner, D, Newburn, MK, Walker, L, Moore, RJ, Huey, LG, Alexander, L, Shepson, PB and Pratt, KA. 2017. Active molecular iodine photochemistry in the Arctic. Proc Natl Acad Sci USA 114(38): 10053-10058. ISSN 0027-8424. https://www.pnas.org/ content/114/38/10053. DOI: https://doi.org/10. 1073/pnas.1702803114
Saiz-Lopez, A, Mahajan, AS, Salmon, RA, Bauguitte, SJB, Jones, AE, Roscoe, HK and Plane, JMC. 2007. Boundary Layer Halogens in Coastal Antarctica. Science 317(5836): 348-351. ISSN 0036-8075. https://science.sciencemag.org/content/317/5836/348. DOI: https://doi.org/10.1126/ science.1141408
Salter, ME, Hamacher-Barth, E, Leck, C, Werner, J, Johnson, CM, Riipinen, I, Nilsson, ED and Zieger, P. 2016. Calcium enrichment in sea spray aerosol particles. Geophys Res Lett 43(15): 8277-8285. DOI: https://doi.org/10.1002/2016GL070275
Schmale, J, Arnold, SR, Law, KS, Thorp, T, Anenberg, S, Simpson, WR, Mao, J and Pratt, KA. 2018. Local Arctic Air Pollution: A Neglected but Serious Problem. Earth's Future 6(10): 1385-1412. DOI: https:// doi.org/10.1029/2018EF000952
Schmale, J, Baccarini, A, Thurnherr, I, Henning, S, Efraim, A, Regayre, L, Bolas, C, Hartmann, M, Welti, A, Lehtipalo, K, Aemisegger, F, Tatzelt, C, Landwehr, S, Modini, RL, Tummon, F, Johnson, J, Harris, N, Schnaiter, M, Toffoli, A, Derkani, M, Bukowiecki, N, Stratmann, F, Dommen, J, Baltensperger, U, Wernli, H, Rosenfeld, D, Gysel-Beer, M and Carslaw, K. 2019. Overview of the Antarctic Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE). Bull Am Meteorol Soc. DOI: https://doi. org/10.1175/BAMS-D-18-0187.1
Si, M, Evoy, E, Yun, J, Xi, Y, Hanna, SJ, Chivulescu, A, Rawlings, K, Veber, D, Platt, A, Kunkel, D, Hoor, P, Sharma, S, Leaitch, WR and Bertram, AK. 2019. Concentrations, composition, and sources of ice-nucleating particles in the Canadian High Arctic during spring 2016. Atmos Chem Phys 19(5): 3007-3024. https://www.atmos-chem-phys. net/19/3007/2019/. DOI: https://doi.org/10. 5194/ acp-19-3007-2019
Simpson, WR, Frieß, U, Thomas, JL, Lampel, J and Platt, U. 2018. Polar Nighttime Chemistry Produces Intense Reactive Bromine Events. Geophys Res Lett 45(18): 9987-9994. DOI: https://doi. org/10.1029/2018GL079444
Simpson, WR, von Glasow, R, Riedel, K, Anderson, P, Ariya, P, Bottenheim, J, Burrows, J, Carpenter, LJ, Frieß, U, Goodsite, ME, Heard, D, Hutterli, M, Jacobi, HW, Kaleschke, L, Neff, B, Plane, J, Platt, U, Richter, A, Roscoe, H, Sander, R, Shepson, P, Sodeau, J, Steffen, A, Wagner, T and Wolff, E. 2007. Halogens and their role in polar boundary-layer ozone depletion. Atmos Chem Phys 7(16): 4375-4418. https://www.atmos-chem-phys. net/7/4375/2007/. DOI: https://doi.org/10.5194/ acp-7-4375-2007
Sipila, M, Sarnela, N, Jokinen, T, Henschel, H, Junninen, H, Kontkanen, J, Richters, S, Kangasluoma, J, Franchin, A, Perakyla, O, Rissanen, MP, Ehn, M, Vehkamaki, H, Kurten, T, Berndt, T, Petaja, T, Worsnop, D, Ceburnis, D, Kerminen, VM, Kulmala, M and O'Dowd, C. 2016. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature 537(7621): 532-534. DOI: https://doi.org/10.1038/nature19314
Skiles, SM, Flanner, M, Cook, JM, Dumont, M and Painter, TH. 2018. Radiative forcing by light-absorbing particles in snow. Nat Clim Change 8(11): 964-971. DOI: https://doi.org/10.1038/ s41558-018-0296-5
Sonke, JE, Teisserenc, R, Heimbürger-Boavida, LE, Petrova, MV, Marusczak, N, Le Dantec, T, Chupakov, AV, Li, C, Thackray, CP, Sunderland, EM, Tananaev, N and Pokrovsky, OS. 2018. Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic Ocean. Proc Natl Acad Sci USA 115(50): E11586-E11594. ISSN 0027-8424. https://www.pnas.org/content/115/50/E11586. DOI: https://doi.org/10.1073/pnas.1811957115
Spreen, G and Kern, S. 2017. Chap. Methods of satellite remote sensing of sea ice. Sea Ice, 239-260. West Sussex, PO19 8SQ, UK: John Wiley & Sons. DOI: https://doi.org/10.1002/9781118778371.ch9
Steffen, A, Douglas, T, Amyot, M, Ariya, P, Aspmo, K, Berg, T, Bottenheim, J, Brooks, S, Cobbett, F, Dastoor, A, Dommergue, A, Ebinghaus, R, Ferrari, C, Gardfeldt, K, Goodsite, ME, Lean, D, Poulain, AJ, Scherz, C, Skov, H, Sommar, J and Temme, C. 2008. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmos Chem Phys 8(6): 1445-1482. https://www.atmos-chem-phys.net/8/1445/2008/. DOI: https://doi. org/ 10.5194/acp-8-1445-2008
Steiner, N, Deal, C, Lannuzel, D, Lavoie, D, Massonnet, F, Miller, LA, Moreau, S, Popova, E, Stefels, J and Tedesco, L. 2016. What sea-ice biogeochemical modellers need from observers. Elementa 4: 81. DOI: https://doi.org/10.12952/journal.elementa. 000084
Steiner, N and Stefels, J. 2017. Commentary on the outputs and future of Biogeochemical Exchange Processes at Sea-Ice Interfaces (BEPSII). Elementa 5: 81. DOI: https://doi.org/10.1525/elementa.272
Stern, GA, Macdonald, RW, Outridge, PM, Wilson, S, Chetelat, J, Cole, A, Hintelmann, H, Loseto, LL, Steffen, A, Wang, F and Zdanowicz, C. 2012. How does climate change influence arctic mercury? Sci Total Environ 414: 22-42. DOI: https://doi. org/10.1016/j.scitotenv.2011.10.039
Stroeve, JC, Serreze, MC, Holland, MM, Kay, JE, Malanik, J and Barrett, AP. 2012. The Arctic's rapidly shrinking sea ice cover: A research synthesis. Climatic Change 110(3-4): 1005-1027. DOI: https:// doi.org/10.1007/s10584-011-0101-1
Struthers, H, Ekman, AML, Glantz, P, Iversen, T, Kirkevag, A, Martensson, EM, Seland, O and Nilsson, ED. 2011. The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic. Atmos Chem Phys 11(7): 3459-3477. DOI: https://doi.org/10.5194/acp-11-3459-2011
Tedesco, L, Vichi, M and Scoccimarro, E. 2019. Sea-ice algal phenology in a warmer Arctic. Sci Adv 5(5). https://advances.sciencemag.org/content/5/5/ eaav4830. DOI: https://doi.org/10.1126/sciadv.aav 4830
Thomas, JL, Dibb, JE, Huey, LG, Liao, J, Tanner, D, Lefer, B, Glasow, RV and Stutz, J. 2012. Modeling chemistry in and above snow at Summit, Greenland - Part 2: Impact of snowpack chemistry on the oxidation capacity of the boundary layer. Atmos Chem Phys 12(14): 6537-6554. DOI: https://doi. org/10.5194/acp-12-6537-2012
Thomas, JL, Stutz, J, Lefer, B, Huey, LG, Toyota, K, Dibb, JE and von Glasow, R. 2011. Modeling chemistry in and above snow at Summit, Greenland - Part 1: Model description and results. Atmos Chem Phys 11(10): 4899-4914. https://www.atmos-chem-phys.net/11/4899/2011/. DOI: https://doi. org/10.5194/acp-11-4899-2011
Toyota, K, McConnell, JC, Staebler, RM and Dastoor, AP. 2014. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 1: In-snow bromine activation and its impact on ozone. Atmos Chem Phys 14(8): 4101-4133. https://www.atmos-chem-phys.net/14/4101/2014/. DOI: https://doi. org/10.5194/acp-14-4101-2014
Turner, J and Comiso, J. 2017. Solve Antarctica's sea-ice puzzle. Nature News 547(7663): 275-277. DOI: https://doi.org/10.1038/547275a
Van Dam, B, Helmig, D, Toro, C, Doskey, P, Kramer, L, Murray, K, Ganzeveld, L and Seok, B. 2015. Dynamics of ozone and nitrogen oxides at Summit, Greenland: I. Multi-year observations in the snowpack. Atmos Env 123: 268-284. http:// www.sciencedirect.com/science/article/pii/ S1352231015304027. DOI: https://doi.org/ 10. 1016/j.atmosenv.2015.09.060
Vancoppenolle, M, Meiners, KM, Michel, C, Bopp, L, Brabant, F, Carnat, G, Delille, B, Lannuzel, D, Madec, G, Moreau, S, Tison, JL and der Merwec, P. 2013. Role of sea ice in global biogeochemical cycles: Emerging views and challenges. Quat Sci Rev 79: 207-230. DOI: https://doi.org/10.1016/j. quascirev.2013.04.011
Vaughan, DG, Comiso, J, Allison, I, Carrasco, J, Kaser, G, Kwok, R, Mote, P, Murray, T, Paul, F, Ren, J, Rignot, E, Solomina, O, Steffen, K and Zhang, T. 2013. Chap. Observations: Cryosphere. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 317-382. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. DOI: https://doi.org/10.1017/ CBO9781107415324.012
Wex, H, Huang, L, Zhang, W, Hung, H, Traversi, R, Becagli, S, Sheesley, RJ, Moffett, CE, Barrett, TE, Bossi, R, Skov, H, Hünerbein, A, Lubitz, J, Löffler, M, Linke, O, Hartmann, M, Herenz, P and Stratmann, F. 2019. Annual variability of icenucleating particle concentrations at different Arctic locations. Atmos Chem Phys 19(7): 5293-5311. https:// www.atmos-chem-phys.net/19/5293/2019/. DOI: https://doi.org/10.5194/acp-19-5293-2019
Willis, MD, Köllner, F, Burkart, J, Bozem, H, Thomas, JL, Schneider, J, Aliabadi, AA, Hoor, PM, Schulz, H, Herber, AB, Leaitch, WR and Abbatt, JPD. 2017. Evidence for marine biogenic influence on summertime Arctic aerosol. Geophys Res Lett. DOI: https://doi.org/10.1002/2017GL073359
Willis, MD, Leaitch, WR and Abbatt, JP. 2018. Processes Controlling the Composition and Abundance of Arctic Aerosol. Rev Geophys 56(4): 621-671. https://agupubs.onlinelibrary.wiley.com/doi/ abs/10.1029/2018RG000602. DOI: https://doi.org/ 10.1029/2018RG000602
Wolff, EW, Barbante, C, Becagli, S, Bigler, M, Boutron, CF, Castellano, E, de Angelis, M, Federer, U, Fischer, H, Fundel, F, Hansson, M, Hutterli, M, Jonsell, U, Karlin, T, Kaufmann, P, Lambert, F, Littot, GC, Mulvaney, R, Röthlisberger, R, Ruth, U, Severi, M, Siggaard-Andersen, ML, Sime, LC, Steffensen, JP, Stocker, TF, Traversi, R, Twarloh, B, Udisti, R, Wagenbach, D and Wegner, A. 2010. Changes in environment over the last 800, 000 years from chemical analysis of the EPICA Dome C ice core. Quat Sci Rev 29(1): 285-295. http://www.sciencedirect.com/science/ article/pii/S027737910900208X. DOI: https://doi. org/10.1016/j.quascirev.2009.06.013
Wren, SN and Donaldson, DJ. 2012. How does deposition of gas phase species affect pH at frozen salty interfaces? Atmos Chem Phys 12(21): 10065-10073. https://www.atmos-chem-phys.net/12/ 10065/ 2012/. DOI: https://doi.org/10.5194/acp-12-10065-2012
Yang, X, Frey, MM, Rhodes, RH, Norris, SJ, Brooks, IM, Anderson, PS, Nishimura, K, Jones, AE and Wolff, EW. 2019. Sea salt aerosol production via sublimating wind-blown saline snow particles over sea ice: Parameterizations and relevant microphysical mechanisms. Atmos Chem Phys 19(13): 8407-8424. https://www.atmos-chem-phys.net/ 19/8407/2019/. DOI: https://doi.org/10.5194/acp- 19-8407-2019
Ye, C, Gao, H, Zhang, N and Zhou, X. 2016. Photolysis of nitric acid and nitrate on natural and artificial surfaces. Environ Sci Technol 50(7): 3530-3536. DOI: https://doi.org/10.1021/acs.est.5b05032
Yeung, LY, Murray, LT, Martinerie, P, Witrant, E, Hu, H, Banerjee, A, Orsi, A and Chappellaz, J. 2019. Isotopic constraint on the twentiethcentury increase in tropospheric ozone. Nature 570(7760): 224-227. DOI: https://doi.org/10.1038/s41586-019-1277-1
Yool, A, Popova, EE and Coward, AC. 2015. Future change in ocean productivity: Is the Arctic the new Atlantic? J Geophys Res 120(12): 7771-7790. DOI: https://doi.org/10.1002/2015JC011167