self-assembly in solution; radical polymerization; cobalt-mediated radical polymerization (CMRP)
Abstract :
[en] Complex coacervate core micelles (C3Ms) form upon complexation of oppositely charged copolymers. These co‐assembled structures are widely investigated as promising building blocks for encapsulation, nanoparticle synthesis, multimodal imaging, and coating technology. Here, the impact on ice growth is investigated of C3Ms containing poly(vinyl alcohol), PVA, which is well known for its high ice recrystallization inhibition (IRI) activity. The PVA‐based C3Ms are prepared upon co‐assembly of poly(4‐vinyl‐N‐methyl‐pyridinium iodide) and poly(vinyl alcohol)‐block‐poly(acrylic acid). Their formation conditions, size, and performance as ice recrystallization inhibitors are studied. It is found that the C3Ms exhibit IRI activity at PVA monomer concentrations as low as 1 × 10−3m. The IRI efficacy of PVA‐C3Ms is similar to that of linear PVA and PVA graft polymers, underlining the influence of vinyl alcohol monomer concentration rather than polymer architecture.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM) omplex and Entangled Systems from Atoms to Materials (CESAM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Sproncken, Christian C. M.; Eindhoven University of Technology, Institute for Complex Molecular Systems, Laboratory of Self-Organizing Soft Matter > Department of Chemical Engineering and Chemistry, Laboratory of Physical Chemistry, The Netherlands
Surís-Valls, Romà; Eindhoven University of Technology, Institute for Complex Molecular Systems, Laboratory of Self-Organizing Soft Matter > Department of Chemical Engineering and Chemistry, Laboratory of Macromolecular and Organic Chemistry, The Netherlands
Cingil, Hande E.; Eindhoven University of Technology, Institute for Complex Molecular Systems, Laboratory of Self-Organizing Soft Matter > Department of Chemical Engineering and Chemistry, Laboratory of Macromolecular and Organic Chemistry, The Netherlands
Detrembleur, Christophe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Voets, Ilja K.; Eindhoven University of Technology, Institute for Complex Molecular Systems, Laboratory of Self-Organizing Soft Matter > Department of Chemical Engineering and Chemistry, Laboratory of Physical Chemistry and Laboratory of Macromolecular and Organic Chemistry, The Netherlands
H. G. Bungenberg de Jong, H. R. Kruyt, Proc. KNAW 1929, 32, 849
a) A. Harada, K. Kataoka, Macromolecules 1995, 28, 5294
b) A. V. Kabanov, T. K. Bronich, V. A. Kabanov, K. Yu, A. Eisenberg, Macromolecules 1996, 29, 6797
c) M. A. Cohen Stuart, N. A. M. Besseling, R. G. Fokkink, Langmuir 1998, 14, 6846
D. Vecchione, A. M. Grimaldi, E. Forte, P. Bevilacqua, P. A. Netti, E. Torino, Sci. Rep. 2017, 7, 45121
M. Takeo, T. Mori, T. Niidome, S. Sawada, K. Akiyoshi, Y. Katayama, J. Colloid Interface Sci. 2013, 390, 78
a) L. M. Bronstein, S. N. Sidorov, P. M. Valetsky, J. Hartmann, H. Cölfen, M. Antonietti, Langmuir 1999, 15, 6256
b) M. Jaturanpinyo, A. Harada, X. Yuan, K. Kataoka, Bioconjugate Chem. 2004, 15, 344
a) K. Kataoka, A. Harada, Y. Nagasaki, Adv. Drug Delivery Rev. 2001, 47, 113
b) S. Lindhoud, R. de Vries, R. Schweins, M. A. C. Stuart, W. Norde, Soft Matter 2009, 5, 242
a) S. Van Der Burgh, R. Fokkink, A. De Keizer, M. A. C. Stuart, Colloids Surf., A 2004, 242, 167
b) A. M. Brzozowska, Q. Zhang, A. de Keizer, W. Norde, M. A. C. Stuart, Colloids Surf., A. 2010, 368, 96
I. K. Voets, W. M. De Vos, B. Hofs, A. De Keizer, M. A. C. Stuart, R. Steitz, D. Lott, J. Phys. Chem. B 2008, 112, 6937
B. Hofs, A. Brzozowska, A. de Keizer, W. Norde, M. A. C. Stuart, J. Colloid Interface Sci. 2008, 325, 309
a) C. Budke, T. Koop, ChemPhysChem 2006, 7, 2601
b) M. I. Gibson, C. A. Barker, S. G. Spain, L. Albertin, N. R. Cameron, Biomacromolecules 2009, 10, 328
c) H. Y. Wang, T. Inada, K. Funakoshi, S. S. Lu, Cryobiology 2009, 59, 83
d) M. I. Gibson, Polym. Chem. 2010, 1, 1141
e) C. Budke, A. Dreyer, J. Jaeger, K. Gimpel, T. Berkemeier, A. S. Bonin, L. Nagel, C. Plattner, A. L. Devries, N. Sewald, T. Koop, Cryst. Growth Des. 2014, 14, 4285
f) T. Congdon, B. T. Dean, J. Kasperczak-Wright, C. I. Biggs, R. Notman, M. I. Gibson, Biomacromolecules 2015, 16, 2820
T. R. Congdon, R. Notman, M. I. Gibson, Biomacromolecules 2016, 17, 3033
L. L. C. Olijve, M. M. R. M. Hendrix, I. K. Voets, Macromol. Chem. Phys. 2016, 217, 951
C. A. Knight, J. Hallett, A. L. DeVries, Cryobiology 1988, 25, 55
M. M. Tomczak, C. B. Marshall, J. A. Gilbert, P. L. Davies, Biochem. Biophys. Res. Commun. 2003, 311, 1041
a) C. Budke, C. Heggemann, M. Koch, N. Sewald, T. Koop, J. Phys. Chem. B 2009, 113, 2865
b) L. L. C. Olijve, A. S. O. Vrielink, I. K. Voets, Cryst. Growth Des. 2016, 16, 4190
A. Debuigne, J. Warnant, R. Jérôme, I. Voets, A. De Keizer, M. A. C. Stuart, C. Detrembleur, Macromolecules 2008, 41, 2353
T. Congdon, R. Notman, M. I. Gibson, Biomacromolecules 2013, 14, 1578
K. Mochizuki, Y. Qiu, V. Molinero, J. Am. Chem. Soc. 2017, 139, 17003
Z. Zhu, J. Xiang, J. Wang, D. Qiu, Langmuir 2017, 33, 191