[en] Polycarbonates bearing linear carbonate linkages and polyether segments have demonstrated to be highly attractive solid electrolyte candidates for the design of safe energy storage devices, e.g. lithium metal batteries. In this contribution, we are studying the influence of the introduction of some cyclic carbonate linkages within the polymer backbone on the electrolyte properties. We first describe the synthesis of polycarbonates/polyethers containing different contents of both linear and cyclic carbonate linkages within the chain by the copolymerization of a highly reactive CO2-based monomer (bis(-alkylidene cyclic carbonate)) with poly(ethylene glycol) diol and a dithiol at room temperature. We then explore the influence of the content of the cyclic carbonates and the loading of the polymer by lithium bis(trifluoromethane) sulfonimide (LiTFSI) on the electrolyte properties (glass transition and melting temperatures, ion conductivity and diffusivity). The best electrolyte candidate is characterized by a linear/cyclic carbonate linkage ratio of 82/18 when loaded with 30 wt% LiTFSI. It exhibits an ion conductivity of 5.6 10-5 S cm-1 at 25°C (7.9 10-4 S cm-1 at 60 °C), which surpasses by 150 % (424 % at 60 °C) the conductivity measured for a similar polymers bearing linear carbonate linkages only. It is also characterized by a high oxidation stability up to 5.6 V (vs. Li/Li+). A self-standing membrane is then constructed by impregnating a glass fiber filter by this optimal polymer, LiTFSI and a small amount of a plasticizer (tetraglyme). Cells are then assembled by sandwiching the membrane between a C-coated LiFePO4 (LFP) as the cathode and lithium as the anode and counter electrode. The cycling performances are evaluated at 0.1 C at 60 °C and room temperature for 40 cycles. Excellent cycling performances are noted with 100 % of the theoretical capacity (170 mAh g-1) at 60 °C, and 73.5 % of the theoretical capacity (125 mAh g-1) at 25 °C.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM) Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Ouhib, Farid ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Meabe, Leire; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
Mahmoud, Abdelfattah ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Group of Research in Energy and ENvironment from MATerials (Greenmat) and Laboratory of Structural Inorganic Chemistry (LCIS), Belgium
Grignard, Bruno ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Thomassin, Jean-Michel ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Boschini, Frédéric ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Group of Research in Energy and ENvironment from MATerials (Greenmat) and Laboratory of Structural Inorganic Chemistry (LCIS), Belgium
Zhu, Haijin; Deakin University, Institute for Frontier Materials (IFM), Waurn Ponds, Australia
Forsyth, Maria; Deakin University, Institute for Frontier Materials (IFM), Waurn Ponds, Australia > IKERBASQUE Basque Foundation for Science, Bilbao, Spain
Mecerreyes, David; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
Detrembleur, Christophe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Language :
English
Title :
Influence of the cyclic vs. linear carbonate segments in the properties and performance of CO2-sourced polymer electrolytes for lithium batteries
Publication date :
14 February 2020
Journal title :
ACS Applied Polymer Materials
eISSN :
2637-6105
Publisher :
American Chemical Society (ACS), Washington, United States - District of Columbia
Volume :
2
Issue :
2
Pages :
922-931
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
EC - European Commission Région wallonne ERC - European Research Council Gobierno Vasco FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen EOS - The Excellence Of Science Program
Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14 (11), 589, 10.1016/0032-3861(73)90146-8
Armand, M. Polymer solid electrolytes-an overview. Solid State Ionics 1983, 9, 745-754, 10.1016/0167-2738(83)90083-8
Armand, M. B. Polymer Electrolytes. Annu. Rev. Mater. Sci. 1986, 16 (1), 245-261, 10.1146/annurev.ms.16.080186.001333
Armand, M. B.; Duclot, M. J.; Rigaud, P. Polymer solid electrolytes: Stability domain. Solid State Ionics 1981, 3, 429-430, 10.1016/0167-2738(81)90126-0
Meyer, W. H. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 1998, 10 (6), 439-448, 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D. Beyond PEO-Alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 2018, 81, 114-143, 10.1016/j.progpolymsci.2017.12.004
Meabe, L.; Huynh, T. V.; Mantione, D.; Porcarelli, L.; Li, C.; O'Dell, L. A.; Sardon, H.; Armand, M.; Forsyth, M.; Mecerreyes, D. UV-cross-linked poly(ethylene oxide carbonate) as free standing solid polymer electrolyte for lithium batteries. Electrochim. Acta 2019, 302, 414-421, 10.1016/j.electacta.2019.02.058
Tominaga, Y.; Yamazaki, K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem. Commun. 2014, 50 (34), 4448-4450, 10.1039/C3CC49588D
Kimura, K.; Yajima, M.; Tominaga, Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochem. Commun. 2016, 66, 46-48, 10.1016/j.elecom.2016.02.022
Mindemark, J.; Sun, B.; Törmä, E.; Brandell, D. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J. Power Sources 2015, 298, 166-170, 10.1016/j.jpowsour.2015.08.035
Berthier, C.; Gorecki, W.; Minier, M.; Armand, M.; Chabagno, J.; Rigaud, P. Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts. Solid State Ionics 1983, 11 (1), 91-95, 10.1016/0167-2738(83)90068-1
Fergus, J. W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 2010, 195 (15), 4554-4569, 10.1016/j.jpowsour.2010.01.076
Mindemark, J.; Imholt, L.; Montero, J.; Brandell, D. Allyl ethers as combined plasticizing and crosslinkable side groups in polycarbonate-based polymer electrolytes for solid-state Li batteries. J. Polym. Sci., Part A: Polym. Chem. 2016, 54 (14), 2128-2135, 10.1002/pola.28080
Wei, X.; Shriver, D. F. Highly Conductive Polymer Electrolytes Containing Rigid Polymers. Chem. Mater. 1998, 10 (9), 2307-2308, 10.1021/cm980170z
Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chem. Soc. Rev. 2019, 48 (16), 4466-4514, 10.1039/C9CS00047J
Kamphuis, A. J.; Picchioni, F.; Pescarmona, P. P. CO2-fixation into cyclic and polymeric carbonates: principles and applications. Green Chem. 2019, 21 (3), 406-448, 10.1039/C8GC03086C
Ouhib, F.; Meabe, L.; Mahmoud, A.; Eshraghi, N.; Grignard, B.; Thomassin, J.-M.; Aqil, A.; Boschini, F.; Jérôme, C.; Mecerreyes, D.; Detrembleur, C. CO2-sourced polycarbonates as solid electrolytes for room temperature operating lithium batteries. J. Mater. Chem. A 2019, 7 (16), 9844-9853, 10.1039/C9TA01564G
Gennen, S.; Grignard, B.; Tassaing, T.; Jérôme, C.; Detrembleur, C. CO2-Sourced α-Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(urethane)s and Poly(carbonate)s. Angew. Chem. 2017, 129 (35), 10530-10534, 10.1002/ange.201704467
Ouhib, F.; Grignard, B.; Van Den Broeck, E.; Luxen, A.; Robeyns, K.; Van Speybroeck, V.; Jerome, C.; Detrembleur, C. A Switchable Domino Process for the Construction of Novel CO2-Sourced Sulfur-Containing Building Blocks and Polymers. Angew. Chem. 2019, 131 (34), 11894-11899, 10.1002/ange.201905969
Tominaga, Y.; Yamazaki, K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2nanoparticles. Chem. Commun. 2014, 50, 4448-4450, 10.1039/C3CC49588D
Tominaga, Y.; Yamazaki, K.; Nanthana, V. Effect of Anions on Lithium Ion Conduction in Poly(ethylene carbonate)-based Polymer Electrolytes. J. Electrochem. Soc. 2015, 162 (2), A3133-A3136, 10.1149/2.0211502jes
Tominaga, Y.; Nanthana, V.; Tohyama, D. Ionic conduction in poly(ethylene carbonate)-basedrubbery electrolytes including lithium salts. Polym. J. 2012, 44, 1155-1158, 10.1038/pj.2012.97
Meabe, L.; Huynh, T. V.; Lago, N.; Sardon, H.; Li, C.; O'Dell, L. A.; Armand, M.; Forsyth, M.; Mecerreyes, D. Poly(ethylene oxide carbonates) solid polymer electrolytes for lithium batteries. Electrochim. Acta 2018, 264, 367-375, 10.1016/j.electacta.2018.01.101
Meabe, L.; Lago, N.; Rubatat, L.; Li, C.; Müller, A. J.; Sardon, H.; Armand, M.; Mecerreyes, D. Polycondensation as a Versatile Synthetic Route to Aliphatic Polycarbonates for Solid Polymer Electrolytes. Electrochim. Acta 2017, 237, 259-266, 10.1016/j.electacta.2017.03.217
Tominaga, Y.; Nakano, K.; Morioka, T. Random copolymers of ethylene carbonate and ethylene oxide for Li-Ion conductive solid electrolytes. Electrochim. Acta 2019, 312, 342-348, 10.1016/j.electacta.2019.05.004
Tominaga, Y.; Shimomura, T.; Nakamura, M. Alternating copolymers of carbon dioxide with glycidyl ethers for novel ion-conductive polymer electrolytes. Polymer 2010, 51 (19), 4295-4298, 10.1016/j.polymer.2010.07.037
Wang, X.; Chen, F.; Girard, G.; Zhu, H.; MacFarlane, D.; Mecerreyes, D.; Armand, M.; Howlett, P.; Forsyth, M. Poly(Ionic Liquid)s-in-Salt Electrolytes with Co-coordination-Assisted Lithium-Ion Transport for Safe Batteries. Joule. 2019, 3 (11), 2687-2702, 10.1016/j.joule.2019.07.008
Shubha, N.; Zhu, H.; Forsyth, M.; Srinivasan, M. Study of lithium conducting single ion conductor based on polystyrene sulfonate for lithium battery application. Polymer 2016, 99, 748-755, 10.1016/j.polymer.2016.07.090
Ong, M.; Verners, O.; Draeger, E.; van Duin, A.; Lordi, V.; Pask, J. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First-Principles and Classical Reactive Molecular Dynamics. J. Phys. Chem. B 2015, 119 (4), 1535-1545, 10.1021/jp508184f
Von Wald Cresce, A.; Gobet, M.; Borodin, O.; Peng, J.; Russell, S. M.; Wikner, E.; Fu, A.; Hu, L.; Lee, H.-S.; Zhang, Z.; Yang, X.-Q.; Greenbaum, S.; Amine, K.; Xu, K. Anion Solvation in Carbonate-Based Electrolytes. J. Phys. Chem. C 2015, 119 (49), 27255-27264, 10.1021/acs.jpcc.5b08895
Bloembergen, N.; Purcell, E. M.; Pound, R. V. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Phys. Rev. 1948, 73, 679-712, 10.1103/PhysRev.73.679