Alternative Photosynthetic Electron Transfers and Bleaching Phenotypes Upon Acute Heat Stress in Symbiodinium and Breviolum spp. (Symbiodiniaceae) in Culture
[en] The breakdown of the symbiosis between cnidarians and Symbiodiniaceae often occurs upon periods of elevated sea surface temperature and gives rise to bleaching events that affect coral reefs worldwide. In this respect, an impairment of photosynthesis would be responsible for light-dependent generation of toxic reactive oxygen species putatively contributing to death of symbionts and/or host cells. In some Symbiodiniaceae species, alternative photosynthetic electron flows (AEF) have been documented to occur upon a shift to high temperature, possibly contributing to photoprotection and to the balance of energetic ratio between photoproduced ATP and NADPH. By using a combination of in vivo spectrofluorimetric and oximetric techniques, we studied the capacity for electron rerouting toward oxygen and cyclic electron flow (CEF) around photosystem I in eight Symbiodiniaceae in culture belonging to Symbiodinium and Breviolum genera upon an acute shift from 25 to 33°C. CEF capacity was determined as the kinetic of PSI primary donor P700 re-reduction in the presence of DCMU, a PSII inhibitor. An active oxygen uptake in light was estimated by comparing net oxygen evolution and relative electron transport rate of PSII at different light intensities. Among strains that showed elevated capacity for both AEF, some were thermotolerant while others were thermosensitive. Conversely, in some thermotolerant strains, capacities for these AEF were low upon acute heat stress. A principal component analysis of these results indicates that the long-term heat tolerant/bleached phenotype of cultured Symbiodinium and Breviolum spp. is not correlated with a capacity for different AEF across isolates during early onset of acute heat stress.
Dang, Thi Kieu Van ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues
Pierangelini, Mattia ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues
Roberty, Stéphane ✱; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Ecophysiologie et physiologie animale
Cardol, Pierre ✱; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues
✱ Ces auteurs ont contribué de façon équivalente à la publication.
Langue du document :
Anglais
Titre :
Alternative Photosynthetic Electron Transfers and Bleaching Phenotypes Upon Acute Heat Stress in Symbiodinium and Breviolum spp. (Symbiodiniaceae) in Culture
H2020 - 682580 - BEAL - Bioenergetics in microalgae : regulation modes of mitochondrial respiration, photosynthesis, and fermentative pathways, and their interactions in secondary algae
Abrego D., Ulstrup K. E., Willis B. L., Van Oppen M. J. H., (2008). Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc. R. Soc. B Biol. Sci. 275 2273–2282. 10.1098/rspb.2008.0180 18577506
Aihara Y., Takahashi S., Minagawa J., (2016). Heat induction of cyclic electron flow around photosystem I in the symbiotic dinoflagellate Symbiodinium. Plant Physiol. 171 522–529. 10.1104/pp.15.01886 26951432
Alric J., (2010). Cyclic electron flow around photosystem I in unicellular green algae. Photosynth. Res. 106 47–56. 10.1007/s11120-010-9566-4 20532629
Badger M. R., Von Caemmerer S., Ruuska S., Nakano H., (2000). Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (mehler reaction) and rubisco oxygenase. Philos. Trans. R. Soc. Lond. Ser. B 355 1433–1446. 10.1098/rstb.2000.0704 11127997
Baird A. H., Bhagooli R., Ralph P. J., Takahashi S., (2009). Coral bleaching: the role of the host. Trends Ecol. Evol. 24 16–20. 10.1016/j.tree.2008.09.005 19022522
Baumgarten S., Simakov O., Esherick L. Y., Liew Y. J., Lehnert E. M., Michell C. T., (2015). The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc. Natl. Acad. Sci. U.S.A. 112 11893–11898. 10.1073/pnas.1513318112 26324906
Bhagooli R., Hidaka M., (2003). Comparison of stress susceptibility of in hospite and isolated zooxanthellae among five coral species. J. Exp. Mar. Biol. Ecol. 291 181–197. 10.1016/s0022-0981(03)00121-7
Bouchard J. N., Yamasaki H., (2008). Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. Plant Cell Physiol. 49 641–652. 10.1093/pcp/pcn037 18308760
Cardol P., Bailleul B., Rappaport F., Derelle E., Béal D., Breyton C., (2008). An original adaptation of photosynthesis in the marine green alga Ostreococcus. Proc. Natl. Acad. Sci. U.S.A. 105 7881–7886. 10.1073/pnas.0802762105 18511560
Cardol P., De Paepe R., Franck F., Forti G., Finazzi G., (2010). The onset of NPQ and ΔμH+ upon illumination of tobacco plants studied through the influence of mitochondrial electron transport. Biochim. Biophys. Acta Bioenerg. 1797 177–188. 10.1016/j.bbabio.2009.10.002 19836343
Chakravarti L. J., Beltran V. H., van Oppen M. J. H., (2017). Rapid thermal adaptation in photosymbionts of reef-building corals. Glob. Change Biol. 23 4675–4688. 10.1111/gcb.13702 28447372
Chakravarti L. J., van Oppen M. J. H., (2018). Experimental evolution in coral photosymbionts as a tool to increase thermal tolerance. Front. Mar. Sci. 5:227. 10.3389/fmars.2018.00227
Díaz-Almeyda E. M., Prada C., Ohdera A. H., Moran H., Civitello D. J., Iglesias-Prieto R., (2017). Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates. Proc. R. Soc. B Biol. Sci. 284:20171767. 10.1098/rspb.2017.1767 29212723
Fan D. Y., Fitzpatrick D., Oguchi R., Ma W., Kou J., Chow W. S., (2016). Obstacles in the quantification of the cyclic electron flux around photosystem I in leaves of C3 plants. Photosynth. Res. 129 239–251. 10.1007/s11120-016-0223-4 26846653
Frieler K., Meinshausen M., Golly A., Mengel M., Lebek K., Donner S., (2013). Limiting global warming to 2°C is unlikely to save most coral reefs. Nat. Clim. Change 3 165–170. 10.1038/nclimate1674
Genty B., Briantais J. M., Baker N. R., (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta Gen.Subjects 990 87–92. 10.1016/s0304-4165(89)80016-9
Goyen S., Pernice M., Szabó M., Warner M. E., Ralph P. J., Suggett D. J., (2017). A molecular physiology basis for functional diversity of hydrogen peroxide production amongst Symbiodinium spp.(Dinophyceae). Mar. Biol. 164:46.
Hawkins T. D., Hagemeyer J. C., Hoadley K. D., Marsh A. G., Warner M. E., (2016a). Partitioning of respiration in an animal-algal symbiosis: implications for different aerobic capacity between Symbiodinium spp. Front. Physiol. 7:128. 10.3389/fphys.2016.00128 27148067
Hawkins T. D., Hagemeyer J. C. G., Warner M. E., (2016b). Temperature moderates the infectiousness of two conspecific Symbiodinium strains isolated from the same host population. Environ. Microbiol. 18 5204–5217. 10.1111/1462-2920.13535 27648935
Hill R., Szabó M., ur Rehman A., Vass I., Ralph P. J., Larkum A. W. D., (2014). Inhibition of photosynthetic CO2 fixation in the coral Pocillopora damicornis and its relationship to thermal bleaching. J. Exp. Biol. 217 2150–2162. 10.1242/jeb.100578 24675559
Hughes T. P., Anderson K. D., Connolly S. R., Heron S. F., Kerry J. T., Lough J. M., (2018). Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359 80–83. 10.1126/science.aan8048 29302011
Hume B. C., Ziegler M., Poulain J., Pochon X., Romac S., Boissin E., (2018). An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ 6:e4816. 10.7717/peerj.4816 29844969
Iglesias-Prieto R., Matta J. L., Robins W. A., Trench R. K., (1992). Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc. Natl. Acad. Sci. U.S.A. 89 10302–10305. 10.1073/pnas.89.21.10302 11607337
Ishikura M., Hagiwara K., Takishita K., Haga M., Iwai K., Maruyama T., (2004). Isolation of new Symbiodinium strains from tridacnid giant clam (Tridacna crocea) and sea slug (Pteraeolidia ianthina) using culture medium containing giant clam tissue homogenate. Mar. Biotechnol. 6 378–385. 10.1007/s10126-004-1800-7 15546049
Johnson X., Steinbeck J., Dent R. M., Takahashi H., Richaud P., Ozawa S. I., (2014). Proton gradient regulation 5-mediated cyclic electron flow under ATP-or redox-limited conditions: a study of ΔATpase pgr5 and ΔrbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii. Plant Physiol. 165 438–452. 10.1104/pp.113.233593 24623849
Jones R. J., Hoegh-Guldberg O., Larkum A. W. D., Schreiber U., (1998). Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ. 21 1219–1230.10.1046/j.1365-3040.1998.00345.x
Krueger T., Becker S., Pontasch S., Dove S., Hoegh-Guldberg O., Leggat W., (2014). Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J. Phycol. 50 1035–1047. 10.1111/jpy.12232 26988785
LaJeunesse T. C., Parkinson J. E., Gabrielson P. W., Jeong H. J., Reimer J. D., Voolstra C. R., (2018). Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28 2570–2580. 10.1016/j.cub.2018.07.008 30100341
Leggat W., Whitney S., Yellowlees D., (2004). Is coral bleaching due to the instability of the zooxanthellae dark reactions? Symbiosis 37 137–153.
Lesser M. P., (1996). Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41 271–283. 10.4319/lo.1996.41.2.0271
Lesser M. P., (2011). Coral Bleaching: Causes and Mechanisms. Springer: Berlin
Lesser M. P., Farrell J. H., (2004). Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23 367–377. 10.1007/s00338-004-0392-z
Levin R. A., Beltran V. H., Hill R., Kjelleberg S., McDougald D., Steinberg P. D., (2016). Sex, scavengers, and chaperones: transcriptome secrets of divergent Symbiodinium thermal tolerances. Mole. Biol. Evol. 33 2201–2215. 10.1093/molbev/msw119 27301593
Lilley R. M., Ralph P. J., Larkum A. W. D., (2010). The determination of activity of the enzyme rubisco in cell extracts of the dinoflagellate alga Symbiodinium sp. by manganese chemiluminescence and its response to short-term thermal stress of the alga. Plant Cell Environ. 33 995–1004. 10.1111/j.1365-3040.2010.02121.x 20102538
Munekage Y. N., Genty B., Peltier G., (2008). Effect of PGR5 impairment on photosynthesis and growth in Arabidopsis thaliana. Plant Cell Physiol. 49 1688–1698. 10.1093/pcp/pcn140 18799484
Myhre G., Shindell D., Bréon F., Collins W., Fuglestvedt J., Huang J., (2013). Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Nawrocki W. J., Bailleul B., Cardol P., Rappaport F., Wollman F. A., Joliot P., (2019). Maximal cyclic electron flow rate is independent of PGRL1 in Chlamydomonas. Biochim. Biophys. Acta Bioenerget. 1860 425–432. 10.1016/j.bbabio.2019.01.004 30711358
Nitschke M. R., Gardner S. G., Goyen S., Fujise L., Camp E. F., Ralph P. J., (2018). Utility of photochemical traits as diagnostics of thermal tolerance amongst great barrier reef corals. Front. Mar. Sci. 5:45. 10.3389/fmars.2018.00045
Oakley C. A., Schmidt G. W., Hopkinson B. M., (2014). Thermal responses of Symbiodinium photosynthetic carbon assimilation. Coral Reefs 33 501–512. 10.1007/s00338-014-1130-9
Parkinson J. E., Baumgarten S., Michell C. T., Baums I. B., LaJeunesse T. C., Voolstra C. R., (2016). Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus Symbiodinium. Genom. Biol. Evol. 8 665–680. 10.1093/gbe/evw019 26868597
Reynolds J. M., Bruns B. U., Fitt W. K., Schmidt G. W., (2008). Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc. Natl. Acad. Sci. U.S.A. 105 13674–13678. 10.1073/pnas.0805187105 18757737
Ritchie R. J., (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89 27–41. 16763878 10.1007/s11120-006-9065-9
Roberty S., Bailleul B., Berne N., Franck F., Cardol P., (2014). PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol. 204 81–91. 10.1111/nph.12903 24975027
Roberty S., Fransolet D., Cardol P., Plumier J. C., Franck F., (2015). Imbalance between oxygen photoreduction and antioxidant capacities in Symbiodinium cells exposed to combined heat and high light stress. Coral Reefs 34 1063–1073. 10.1007/s00338-015-1328-5
Roberty S., Furla P., Plumier J. C., (2016). Differential antioxidant response between two Symbiodinium species from contrasting environments. Plant Cell Environ. 39 2713–2724. 10.1111/pce.12825 27577027
Robison J. D., Warner M. E., (2006). Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J. Phycol. 42 568–579. 10.1111/j.1529-8817.2006.00232.x
Rosic N., Pernice M., Dove S., Dunn S., Hoegh-Guldberg O., (2011). Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching. Cell Stress Chaperones 16 69–80. 10.1007/s12192-010-0222-x 20821176
Roth M. S., (2014). The engine of the reef: photobiology of the coral-algal symbiosis. Front. Microbiol. 5:422. 10.3389/fmicb.2014.00422 25202301
Silverstein R. N., Cunning R., Baker A. C., (2015). Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Change Biol. 21 236–249. 10.1111/gcb.12706 25099991
Silverstein R. N., Cunning R., Baker A. C., (2017). Tenacious D: Symbiodinium in clade D remain in reef corals at both high and low temperature extremes despite impairment. J. Exp. Biol. 220 1192–1196. 10.1242/jeb.148239 28108671
Smith D. J., Suggett D. J., Baker N. R., (2005). Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Glob. Change Biol. 11 1–11. 10.1111/j.1529-8817.2003.00895.x
Suggett D. J., Smith D. J., (2011). Interpreting the sign of coral bleaching as friend vs. foe. Glob. Change Biol. 17 45–55. 10.1111/j.1365-2486.2009.02155.x
Suggett D. J., Warner M. E., Leggat W., (2017). Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol. Evol. 32 735–745. 10.1016/j.tree.2017.07.013 28843439
Suggett D. J., Warner M. E., Smith D. J., Davey P., Hennige S., Baker N. R., (2008). Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. J. Phycol. 44 948–956. 10.1111/j.1529-8817.2008.00537.x 27041613
Szabó M., Larkum A. W. D., Suggett D. J., Vass I., Sass L., Osmond B., (2017). Non-intrusive assessment of Photosystem II and Photosystem I in whole coral tissues. Front. Mar. Sci. 4:269.
Takahashi S., Nakamura T., Sakamizu M., Van Woesik R., Yamasaki H., (2004). Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol. 45 251–255. 14988497 10.1093/pcp/pch028
Takahashi S., Whitney S. M., Badger M. R., (2009). Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. Proc. Natl. Acad. Sci. U.S.A. 106 3237–3242. 10.1073/pnas.0808363106 19202067
Takahashi S., Yoshioka-Nishimura M., Nanba D., Badger M. R., (2013). Thermal acclimation of the symbiotic alga Symbiodinium spp. alleviates photobleaching under heat stress. Plant Physiol. 161 477–485. 10.1104/pp.112.207480 23170037
Tchernov D., Gorbunov M. Y., De Vargas C., Yadav S. N., Milligan A. J., Haggblom M., (2004). Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc. Natl. Acad. Sci. U.S.A. 101 13531–13535. 10.1073/pnas.0402907101 15340154
Ulstrup K. E., Hill R., Ralph P. J., (2005). Photosynthetic impact of hypoxia on in hospite zooxanthellae in the scleractinian coral Pocillopora damicornis. Mar. Ecol. Prog. Ser. 286 125–132. 10.3354/meps286125
Van Hooidonk R., Maynard J., Planes S., (2013). Temporary refugia for coral reefs in a warming world. Nat. Clim. Change 3 508–511. 10.1038/nclimate1829
Venn A. A., Loram J. E., Douglas A. E., (2008). Photosynthetic symbioses in animals. J. Exp. Bot. 59 1069–1080. 10.1093/jxb/erm328 18267943
Visram S., Wiedenmann J., Douglas A. E., (2006). Molecular diversity of symbiotic algae of the genus Symbiodinium (Zooxanthellae) in cnidarians of the Mediterranean Sea. J. Mar. Biol. Assoc. U.K. 86 1281–1283. 10.1017/s0025315406014299
Warner M. E., Berry-Lowe S., (2006). Differential xanthophyll cycling and photochemical activity in symbiotic dinoflagellates in multiple locations of three species of caribbean coral. J. Exp. Mar. Biol. Ecol. 339 86–95. 10.1016/j.jembe.2006.07.011
Warner M. E., Fitt W. K., Schmidt G. W., (1999). Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl. Acad. Sci. U.S.A. 96 8007–8012. 10.1073/pnas.96.14.8007 10393938
Warner M. E., Suggett D. J., (2016). “The photobiology of symbiodinium spp.: linking physiological diversity to the implications of stress and resilience,” in The Cnidaria, Past, Present and Future: The world of Medusa and her sisters, eds Goffredo S., Dubinsky Z., (Cham: Springer International Publishing), 489–509. 10.1007/978-3-319-31305-4_30
Weis V. M., (2008). Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211 3059–3066. 10.1242/jeb.009597 18805804
Xiang T., Hambleton E. A., DeNofrio J. C., Pringle J. R., Grossman A. R., (2013). Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity. J. Phycol. 49 447–458. 10.1111/jpy.12055 27007034