Kaolin; halloysite; kaolinite; illite; kinetic; clay; Remediation of contaminated water; organic dyes; Morocco; low-cost and eco-environmentally friendly adsorbent; methylene blue
Abstract :
[en] Remediation of contaminated water with organic dyes originated from variety of industrial processes deserves increased attention. Raw clay is an effective low-cost and eco-environmentally friendly adsorbent for the removal of methylene blue (MB) from solution. This study aims to determine kinetics and thermodynamics of MB adsorption onto raw kaolin clays (halloysite and kaolinite/illite) from northeast of Morocco. The apportion capacity of the two kaolin clays to adsorb the MB dye by varying temperature and pH conditions was studied. The thermodynamic parameters show that the sorption of MB is spontaneous and endothermic for halloysite-rich clay, whereas adsorption onto kaolinite/illite is inhibited by electrostatic exothermic effects and the sorption is thermodynamically unfavorable. The kinetic study showed that the adsorption capacity of MB on halloysite is greater than on kaolinite. The intraparticle diffusion process controls the adsorption reaction, and the kinetic is more important for halloysite.
Disciplines :
Chemistry Earth sciences & physical geography
Author, co-author :
Harrou, Achraf
Gharibi, Elkhadir
Nasri, Hicham
El Ouahabi, Meriam ; Université de Liège - ULiège > Département de géographie > Géomorphologie et Géologie du Quaternaire
Language :
English
Title :
Thermodynamics and kinetics of the removal of methylene blue from aqueous solution by raw kaolin
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Mondal S (2008) Methods of dye removal from dye house effluent-an overview. Environ Eng Sci 25:383–396. 10.1089/ees.2007.0049 DOI: 10.1089/ees.2007.0049
Gupta VK, Carrott PJM, Ribeiro Carrott MML et al (2009) Low-cost adsorbents: growing approach to wastewater treatment-a review. Crit Rev Environ Sci Technol 39:783–842. 10.1080/10643380801977610 DOI: 10.1080/10643380801977610
Yagub MT, Sen TK, Afroze S et al (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Coll Interface Sci 209:172–184. 10.1016/j.cis.2014.04.002 DOI: 10.1016/j.cis.2014.04.002
Ngulube T, Gumbo JR, Masindi V et al (2017) An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review. J Environ Manag 191:35–57. 10.1016/j.jenvman.2016.12.031 DOI: 10.1016/j.jenvman.2016.12.031
Aghdasinia H, Asiabi HR (2018) Adsorption of a cationic dye (methylene blue) by Iranian natural clays from aqueous solutions: equilibrium, kinetic and thermodynamic study. Environ Earth Sci 77:218. 10.1007/s12665-018-7342-5 DOI: 10.1007/s12665-018-7342-5
Sarici-Özdemir Ç, Kiliç F (2018) Kinetics behavior of methylene blue onto agricultural waste. Part Sci Technol 36:194–201. 10.1080/02726351.2016.1240127 DOI: 10.1080/02726351.2016.1240127
Sarici Özdemir Ç (2019) Equilibrium, kinetic, diffusion and thermodynamic applications for dye adsorption with pine cone. Sep Sci Technol 54:3046–3054. 10.1080/01496395.2019.1565769 DOI: 10.1080/01496395.2019.1565769
Tamai H, Yoshida T, Sasaki M et al (1999) Dye adsorption on mesoporous activated carbon fiber obtained from pitch containing yttrium complex. Carbon 37:983–989. 10.1016/S0008-6223(98)00294-2 DOI: 10.1016/S0008-6223(98)00294-2
Wang S, Li H, Xu L (2006) Application of zeolite MCM-22 for basic dye removal from wastewater. J Colloid Interface Sci 295:71–78. 10.1016/j.jcis.2005.08.006 DOI: 10.1016/j.jcis.2005.08.006
Maffei AV, Budd PM, McKeown NB (2006) Adsorption studies of a microporous phthalocyanine network polymer. Langmuir 22:4225–4229. 10.1021/la060091z DOI: 10.1021/la060091z
Wu FC, Tseng RL, Juang RS (2005) Preparation of highly microporous carbons from fir wood by KOH activation for adsorption of dyes and phenols from water. Sep Purif Technol 47:10–19. 10.1016/j.seppur.2005.03.013 DOI: 10.1016/j.seppur.2005.03.013
Shukla S, Dhiman N (2017) Characterization and adsorption of disperse dyes from wastewater onto cenospheres activated carbon composites. Environ Earth Sci 76:702. 10.1007/s12665-017-7030-x DOI: 10.1007/s12665-017-7030-x
Lee CK, Lin KS, Wu CF et al (2008) Effects of synthesis temperature on the microstructures and basic dyes adsorption of titanate nanotubes. J Hazard Mater 150:494–503. 10.1016/j.jhazmat.2007.04.129 DOI: 10.1016/j.jhazmat.2007.04.129
Chen Z, Zhang J, Fu J, Wang M, Wang X, Han R, Xu Q (2014) Adsorption of methylene blue onto poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) nanotubes: kinetics, isotherm and thermodynamics analysis. J Hazard Mater 273:263–271 DOI: 10.1016/j.jhazmat.2014.03.053
Chen Z, Fu J, Wang M, Wang X, Zhang J, Xu Q (2014) Adsorption of cationic dye (methylene blue) from aqueous solution using poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) nanospheres. Appl Surf Sci 289:495–501 DOI: 10.1016/j.apsusc.2013.11.022
Fu J, Chen Z, Wang M, Liu S, Zhang J, Zhang J, Runping H, Xu Q (2015) Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J 259:53–61 DOI: 10.1016/j.cej.2014.07.101
Murray HH (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci 17:207–221. 10.1016/S0169-1317(00)00016-8 DOI: 10.1016/S0169-1317(00)00016-8
Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Biores Technol 97:1061–1085. 10.1016/j.biortech.2005.05.001 DOI: 10.1016/j.biortech.2005.05.001
Mouni L, Belkhiri L, Bollinger JC et al (2018) Removal of methylene blue from aqueous solutions by adsorption on kaolin: kinetic and equilibrium studies. Appl Clay Sci 153:38–45. 10.1016/j.clay.2017.11.034 DOI: 10.1016/j.clay.2017.11.034
Bailey SW (1963) Polymorphism of the kaolin minerals. American Mineralogist. J Earth Planet Mater 48:1196–1209
Dill HG (2016) Kaolin: soil, rock and ore: from the mineral to the magmatic, sedimentary and metamorphic environments. Earth Sci Rev 161:16–129. 10.1016/j.earscirev.2016.07.003 DOI: 10.1016/j.earscirev.2016.07.003
Ma C, Eggleton RA (1999) Cation exchange capacity of kaolinite. Clays Clay Miner 47:174–180. 10.1346/CCMN.1999.0470207 DOI: 10.1346/CCMN.1999.0470207
Ōya A, Kizu K, Ōtani S (1987) Porous materials prepared by heating derivatives from halloysite. J Mater Sci 22:4541–4545. 10.1007/BF01132060 DOI: 10.1007/BF01132060
Zhou CH, Keeling J (2013) Fundamental and applied research on clay minerals: from climate and environment to nanotechnology. Appl Clay Sci 74:3–9. 10.1016/j.clay.2013.02.013 DOI: 10.1016/j.clay.2013.02.013
El Haddar A, Gharibi E, Azdimousa A et al (2018) Characterization of halloysite (North East Rif, Morocco): evaluation of its suitability for the ceramics industry. Clay Miner 53:65–78. 10.1180/clm.2018.5 DOI: 10.1180/clm.2018.5
Shu Z, Chen Y, Zhou J et al (2015) Nanoporous-walled silica and alumina nanotubes derived from halloysite: controllable preparation and their dye adsorption applications. Appl Clay Sci 112:17–24 DOI: 10.1016/j.clay.2015.04.014
Levis SR, Deasy PB (2002) Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm 243:125–134. 10.1016/S0378-5173(02)00274-0 DOI: 10.1016/S0378-5173(02)00274-0
Massaro M, Colletti CG, Lazzara G et al (2017) Halloysite nanotubes as support for metal-based catalysts. J Mater Chem A 5:13276–13293. 10.1039/C7TA02996A DOI: 10.1039/C7TA02996A
Maziarz P, Matusik J (2016) The effect of acid activation and calcination of halloysite on the efficiency and selectivity of Pb(II), Cd (II), Zn (II) and As (V) uptake. Clay Miner 51:385–394. 10.1180/claymin.2016.051.3.06 DOI: 10.1180/claymin.2016.051.3.06
Anastopoulos I, Mittal A, Usman M et al (2018) A review on halloysite-based adsorbents to remove pollutants in water and wastewater. J Mol Liq 269:855–868. 10.1016/j.molliq.2018.08.104 DOI: 10.1016/j.molliq.2018.08.104
Ngulube T, Gumbo JR, Masindi V et al (2019) Evaluation of the efficacy of halloysite nanotubes in the removal of acidic and basic dyes from aqueous solution. Clay Miner 54:197–207 DOI: 10.1180/clm.2019.27
Dahmani H, Jadid M, El Hammouti K et al (2016) The origin of Kaolin in the Béni-Snassène granodiorite sand (Northeastern Morocco). J Mater Environ Sci 7:4723–4732
Rouiller J, Souchie B, Bruckert S et al (1994) Méthodes d’analyses des sols. In: Bonneau M, Souchier B (eds) Pédologie: 2. Constituants et propriétés du sol. Paris, Masson, p 459
Mantin I (1969) Mesure de la capacité d’échange des minéraux argileux par l’éthylène diamine et les ions complexes de l’éthylène diamine. Comptes Rendus des Séances de l’Académie des Sciences, Série D: Sciences Naturelles 269:815–818
Bergaya F, Vayer M (1997) CEC of clays: measurement by adsorption of a copper ethylenediamine complex. Appl Clay Sci 12:275–280. 10.1016/S0169-1317(97)00012-4 DOI: 10.1016/S0169-1317(97)00012-4
Doğan M, Alkan M (2003) Adsorption kinetics of methyl violet onto perlite. Chemosphere 50:517–528. 10.1016/S0045-6535(02)00629-X DOI: 10.1016/S0045-6535(02)00629-X
Alkan M, Demirbaş Ö, Doğan M (2007) Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. Microporous Mesoporous Mater 101:388–396. 10.1016/j.micromeso.2006.12.007 DOI: 10.1016/j.micromeso.2006.12.007
Shaker MA (2014) Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid. Chemosphere 111:587–595. 10.1016/j.chemosphere.2014.04.088 DOI: 10.1016/j.chemosphere.2014.04.088
Yu F, Sun S, Han S et al (2016) Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem Eng J 285:588–595. 10.1016/j.cej.2015.10.039 DOI: 10.1016/j.cej.2015.10.039
Bordeepong S, Bhongsuwan D, Pungrassami T et al (2011) Characterization of halloysite from Thung Yai District, Nakhon Si Thammarat Province, in Southern Thailand, Songklanakarin. J Sci Technol 33:599–607
Ouyang J, Zhou Z, Zhang Y et al (2014) High morphological stability and structural transition of halloysite (Hunan, China) in heat treatment. Appl Clay Sci 101:16–22. 10.1016/j.clay.2014.08.010 DOI: 10.1016/j.clay.2014.08.010
Lu Y, Wang R, Lu X et al (2016) Reprint of Genesis of halloysite from the weathering of muscovite: insights from microscopic observations of a weathered granite in the Gaoling Area, Jingdezhen, China. Appl Clay Sci 119:59–66. 10.1016/j.clay.2015.08.024 DOI: 10.1016/j.clay.2015.08.024
Van der Marel HW, Beutelspacher H (1976) Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier, Dordrecht
Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Halloysite clay minerals—a review. Clay Miner 4:383–426. 10.1180/0009855054040180 DOI: 10.1180/0009855054040180
Özdemir Y, Doğan M, Alkan M (2006) Adsorption of cationic dyes from aqueous solutions by sepiolite. Microporous Mesoporous Mater 96:419–427. 10.1016/j.micromeso.2006.07.026 DOI: 10.1016/j.micromeso.2006.07.026
Shchukin DG, Lamaka SV, Yasakau KA et al (2008) Active anticorrosion coatings with halloysite nanocontainers. J Phys Chem C 112:958–964. 10.1021/jp076188r DOI: 10.1021/jp076188r
Kretzschmar R, Holthoff H, Sticher H (1998) Influence of pH and humic acid on coagulation kinetics of kaolinite: a dynamic light scattering study. J Colloid Interface Sci 202:95–103. 10.1006/jcis.1998.5440 DOI: 10.1006/jcis.1998.5440
Huertas FJ, Chou L, Wollast R (1999) Mechanism of kaolinite dissolution at room temperature and pressure Part II: kinetic study. Geochim Cosmochim Acta 63:3261–3275. 10.1016/S0016-7037(99)00249-5 DOI: 10.1016/S0016-7037(99)00249-5
Stumm W (1987) Aquatic surface chemistry: chemical processes at the particle-water interface. Wiley, New York
Wu CH (2007) Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J Hazard Mater 144:93–100. 10.1016/j.jhazmat.2006.09.083 DOI: 10.1016/j.jhazmat.2006.09.083
Omer OS, Hussein MA, Hussein BH et al (2018) Adsorption thermodynamics of cationic dyes (methylene blue and crystal violet) to a natural clay mineral from aqueous solution between 293.15 and 323.15 K. Arab J Chem 11:615–623. 10.1016/j.arabjc.2017.10.007 DOI: 10.1016/j.arabjc.2017.10.007
Kara M, Yuzer H, Sabah E et al (2003) Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res 37:224–232. 10.1016/S0043-1354(02)00265-8 DOI: 10.1016/S0043-1354(02)00265-8
Ward DB, Brady PV (1998) Effect of Al and organic acids on the surface chemistry of kaolinite. Clays Clay Miner 46:453–465. 10.1346/CCMN.1998.0460410 DOI: 10.1346/CCMN.1998.0460410
Taty-Costodes VC, Fauduet H, Porte C et al (2003) Removal of Cd (II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J Hazard Mater 105:121–142. 10.1016/j.jhazmat.2003.07.009 DOI: 10.1016/j.jhazmat.2003.07.009
Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124. 10.1016/S0923-0467(98)00076-1 DOI: 10.1016/S0923-0467(98)00076-1
Kumar KV, Porkodi K, Rocha F (2008) Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon. J Hazard Mater 150:158–165. 10.1016/j.jhazmat.2007.09.020 DOI: 10.1016/j.jhazmat.2007.09.020
Doğan M, Alkan M, Türkyilmaz A et al (2004) Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. J Hazard Mater 109:141–148. 10.1016/j.jhazmat.2004.03.003 DOI: 10.1016/j.jhazmat.2004.03.003
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.