NOTICE: this is the author’s version of a work that was accepted for publication in Journal of the Mechanics and Physics of Solids . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of the Mechanics and Physics of Solids , 137, 2020, 103891, DOI: 10.1016/j.jmps.2020.103891
All documents in ORBi are protected by a user license.
Ductile failure; Coalescence; Large Strain; Nonlocal
Abstract :
[en] An advanced modeling framework is developed for predicting the failure of ductile materials relying on micromechanics, physical ingredients, and robust numerical methods. The approach is based on a hyperelastic finite strain multi-surface constitutive model with multiple nonlocal variables. The three distinct nonlocal solutions for the expansion of voids embedded in an elastoplastic matrix are considered: a void growth phase governed by the Gurson-Tvergaard-Needleman yield surface, a void necking coalescence phase governed by a heuristic extension of the Thomason yield surface based on the maximum principal stress, and a competing void shearing coalescence phase triggered by the maximum shear stress. The first solution considers the diffused plastic deformation around the voids while the last two solutions correspond to a state of plastic localization between neighboring voids. This combination captures the Lode variable and shear effects, which play important roles in dictating the damage evolution rates. The implicit nonlocal formulation with multiple nonlocal variables, including the volumetric and deviatoric parts of the plastic strain, and the mean equivalent plastic strain of the matrix, regularizes the problem of the loss of solution uniqueness when material softening occurs whatever the localization mechanism. The predictive capability of the proposed model is demonstrated through different numerical simulations in which complex failure patterns such as slant and cup-cone of respectively plane strain and axisymmetric samples under tensile loading conditions develop.
Achouri, M., Germain, G., Santo, P.D., Saidane, D., Experimental characterization and numerical modeling of micromechanical damage under different stress states. Materials & Design 50 (2013), 207–222, 10.1016/j.matdes.2013.02.075 http://www.sciencedirect.com/science/article/pii/S0261306913001866.
Aldakheel, F., Wriggers, P., Miehe, C., A modified gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Comput. Mech. 62:4 (2018), 815–833, 10.1007/s00466-017-1530-0.
Ambati, M., Kruse, R., De Lorenzis, L., A phase-field model for ductile fracture at finite strains and its experimental verification. Comput. Mech. 57:1 (2016), 149–167, 10.1007/s00466-015-1225-3.
Anand, L., Aslan, O., Chester, S.A., A large-deformation gradient theory for elastic plastic materials: Strain softening and regularization of shear bands. International Journal of Plasticity 30-31 (2012), 116–143, 10.1016/j.ijplas.2011.10.002 http://www.sciencedirect.com/science/article/pii/S0749641911001665.
Andrade, F., de Sá, J.C., Pires, F.A., Assessment and comparison of non-local integral models for ductile damage. Int. J. Damage Mech. 23:2 (2014), 261–296, 10.1177/1056789513493103.
Bao, Y., Wierzbicki, T., On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences 46:1 (2004), 81–98, 10.1016/j.ijmecsci.2004.02.006 http://www.sciencedirect.com/science/article/pii/S0020740304000360.
Barsoum, I., Faleskog, J., Rupture mechanisms in combined tension and shear experiments. International Journal of Solids and Structures 44:6 (2007), 1768–1786, 10.1016/j.ijsolstr.2006.09.031 Physics and Mechanics of Advanced Materials http://www.sciencedirect.com/science/article/pii/S0020768306003921.
Barsoum, I., Faleskog, J., Micromechanical analysis on the influence of the lode parameter on void growth and coalescence. International Journal of Solids and Structures 48:6 (2011), 925–938, 10.1016/j.ijsolstr.2010.11.028 http://www.sciencedirect.com/science/article/pii/S002076831000435X.
Barsoum, I., Faleskog, J., Pingle, S., The effect of stress state on ductility in the moderate stress triaxiality regime of medium and high strength steels. International Journal of Mechanical Sciences 65:1 (2012), 203–212, 10.1016/j.ijmecsci.2012.10.003 http://www.sciencedirect.com/science/article/pii/S0020740312002226.
Bažant, Z.P., Jirásek, M., Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128:11 (2002), 1119–1149.
Benzerga, A., Micromechanics of coalescence in ductile fracture. J. Mech. Phys. Solids 50:6 (2002), 1331–1362, 10.1016/S0022-5096(01)00125-9.
Benzerga, A., Besson, J., Pineau, A., Anisotropic ductile fracture: Part ii: theory. Acta Materialia 52:15 (2004), 4639–4650, 10.1016/j.actamat.2004.06.019 http://www.sciencedirect.com/science/article/pii/S135964540400357X.
Benzerga, A.A., Besson, J., Batisse, R., Pineau, A., Synergistic effects of plastic anisotropy and void coalescence on fracture mode in plane strain. Modelling and Simulation in Materials Science and Engineering, 10(1), 2002, 73 http://stacks.iop.org/0965-0393/10/i=1/a=306.
Benzerga, A.A., Leblond, J.-B., Ductile Fracture by Void Growth to Coalescence. Aref, H., van der Giessen, E., (eds.) Advances in Applied Mechanics Advances in Applied Mechanics, 44, 2010, Elsevier, 169–305, 10.1016/S0065-2156(10)44003-X.
Benzerga, A.A., Leblond, J.-B., Effective yield criterion accounting for microvoid coalescence. J. Appl. Mech., 81(3), 2014, 31009.
Benzerga, A.A., Leblond, J.-B., Needleman, A., Tvergaard, V., Ductile failure modeling. Int. J. Fract. 201:1 (2016), 29–80, 10.1007/s10704-016-0142-6.
Besson, J., Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms. International Journal of Plasticity 25:11 (2009), 2204–2221, 10.1016/j.ijplas.2009.03.001 http://www.sciencedirect.com/science/article/pii/S0749641909000357.
Besson, J., Steglich, D., Brocks, W., Modeling of plane strain ductile rupture. International Journal of Plasticity 19:10 (2003), 1517–1541, 10.1016/S0749-6419(02)00022-0 http://www.sciencedirect.com/science/article/pii/S0749641902000220.
Chen, J., Yuan, H., A micro-mechanical damage model based on gradient plasticity: algorithms and applications. Int. J. Numer. Methods Eng. 54:3 (2002), 399–420.
Chu, C., Needleman, A., Void nucleation effects in biaxially stretched sheets. J. Eng. Mater. Technol. 102:3 (1980), 249–256.
De Borst, R., Mühlhaus, H.-B., Gradient-dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng. 35:3 (1992), 521–539.
De Borst, R., Sluys, L., Muhlhaus, H.-B., Pamin, J., Fundamental issues in finite element analyses of localization of deformation. Eng. Comput. 10:2 (1993), 99–121.
Dunand, M., Mohr, D., On the predictive capabilities of the shear modified Gurson and the modified Mohr coulomb fracture models over a wide range of stress triaxialities and lode angles. Journal of the Mechanics and Physics of Solids 59:7 (2011), 1374–1394, 10.1016/j.jmps.2011.04.006 http://www.sciencedirect.com/science/article/pii/S0022509611000688.
Dunand, M., Mohr, D., Effect of lode parameter on plastic flow localization after proportional loading at low stress triaxialities. Journal of the Mechanics and Physics of Solids 66 (2014), 133–153, 10.1016/j.jmps.2014.01.008 http://www.sciencedirect.com/science/article/pii/S0022509614000180.
Enakoutsa, K., Leblond, J., Perrin, G., Numerical implementation and assessment of a phenomenological nonlocal model of ductile rupture. Computer Methods in Applied Mechanics and Engineering 196:13 (2007), 1946–1957, 10.1016/j.cma.2006.10.003 http://www.sciencedirect.com/science/article/pii/S004578250600329X.
Engelen, R.A., Geers, M.G., Baaijens, F.P., Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. Int. J. Plast. 19:4 (2003), 403–433, 10.1016/S0749-6419(01)00042-0.
Faleskog, J., Barsoum, I., Tensiontorsion fracture experimentspart i: Experiments and a procedure to evaluate the equivalent plastic strain. International Journal of Solids and Structures 50:25 (2013), 4241–4257, 10.1016/j.ijsolstr.2013.08.029 http://www.sciencedirect.com/science/article/pii/S0020768313003454.
Forest, S., Micromorphic approach for gradient elasticity, viscoplasticity, and damage. Journal of Engineering Mechanics 135:3 (2009), 117–131 doi: 10.1061/(ASCE)0733-9399(2009)135:3(117).
Gao, X., Zhang, G., Roe, C., A study on the effect of the stress state on ductile fracture. Int. J. Damage Mech. 19:1 (2010), 75–94, 10.1177/1056789509101917.
Geers, M.G.D., Enhanced solution control for physically and geometrically non-linear problems. part iicomparative performance analysis. Int. J. Numer. Methods Eng. 46:2 (1999), 205–230, 10.1002/(SICI)1097-0207(19990920)46:2<205::AID-NME669>3.0.CO;2-S.
Geers, M.G.D., Peerlings, R.H.J., Brekelmans, W.A.M., de Borst, R., Phenomenological nonlocal approaches based on implicit gradient-enhanced damage. Acta Mech. 144:1 (2000), 1–15, 10.1007/BF01181824.
Ghahremaninezhad, A., Ravi-Chandar, K., Ductile failure behavior of polycrystalline al 6061-t6 under shear dominant loading. Int. J. Fract. 180:1 (2013), 23–39, 10.1007/s10704-012-9793-0.
Gologanu, M., Leblond, J.-B., Devaux, J., Approximate models for ductile metals containing non-spherical voids - case of axisymmetric prolate ellipsoidal cavities. J. Mech. Phys. Solids 41:11 (1993), 1723–1754, 10.1016/0022-5096(93)90029-F.
Gologanu, M., Leblond, J.-B., Devaux, J., Approximate models for ductile metals containing nonspherical voids - case of axisymmetric oblate ellipsoidal cavities. J. Eng. Mater. Technol. 116:3 (1994), 290–297.
Gurson, A.L., Continuum theory of ductile rupture by void nucleation and growth: part I - yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99:1 (1977), 2–15.
Gurtin, M.E., Anand, L., The decomposition f=fefp, material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous. International Journal of Plasticity 21:9 (2005), 1686–1719, 10.1016/j.ijplas.2004.11.007 http://www.sciencedirect.com/science/article/pii/S0749641904001603.
Håkansson, P., Wallin, M., Ristinmaa, M., Thermomechanical response of non-local porous material. International Journal of Plasticity 22:11 (2006), 2066–2090, 10.1016/j.ijplas.2005.08.003 Damage and Fracture: Modeling and Experiments http://www.sciencedirect.com/science/article/pii/S0749641906000623.
Haltom, S., Kyriakides, S., Ravi-Chandar, K., Ductile failure under combined shear and tension. International Journal of Solids and Structures 50:10 (2013), 1507–1522, 10.1016/j.ijsolstr.2012.12.009 http://www.sciencedirect.com/science/article/pii/S0020768312005203.
Hütter, G., Linse, T., Mühlich, U., Kuna, M., Simulation of ductile crack initiation and propagation by means of a non-local Gurson-model. International Journal of Solids and Structures 50:5 (2013), 662–671, 10.1016/j.ijsolstr.2012.10.031 http://www.sciencedirect.com/science/article/pii/S0020768312004659.
Hütter, G., Linse, T., Roth, S., Mühlich, U., Kuna, M., A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model. Int. J. Fract. 185:1 (2014), 129–153, 10.1007/s10704-013-9914-4.
Jirásek, M., Nonlocal models for damage and fracture: comparison of approaches. Int. J. Solids Struct. 35:31 (1998), 4133–4145, 10.1016/S0020-7683(97)00306-5.
Jirásek, M., Rolshoven, S., Comparison of integral-type nonlocal plasticity models for strain-softening materials. Int. J. Eng. Sci. 41:13 (2003), 1553–1602, 10.1016/S0020-7225(03)00027-2.
Keralavarma, S., Benzerga, A., A constitutive model for plastically anisotropic solids with non-spherical voids. Journal of the Mechanics and Physics of Solids 58:6 (2010), 874–901, 10.1016/j.jmps.2010.03.007 http://www.sciencedirect.com/science/article/pii/S0022509610000682.
Keralavarma, S., Chockalingam, S., A criterion for void coalescence in anisotropic ductile materials. International Journal of Plasticity 82 (2016), 159–176, 10.1016/j.ijplas.2016.03.003 http://www.sciencedirect.com/science/article/pii/S0749641916300274.
Kim, J., Gao, X., Srivatsan, T.S., Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Eng. Fract. Mech. 71:3 (2004), 379–400, 10.1016/S0013-7944(03)00114-0.
Leblond, J., Perrin, G., Devaux, J., Bifurcation effects in ductile metals with nonlocal damage. J. Appl. Mech. 61:2 (1994), 236–242.
Leclerc, J., Nguyen, V.-D., Pardoen, T., Noels, L., A micromechanics-based non-local damage to crack transition framework for porous elastoplastic solids. Int. J. Plast., 2020, 10.1016/j.ijplas.2019.11.010.
Leclerc, J., Wu, L., Nguyen, V.D., Noels, L., A damage to crack transition model accounting for stress triaxiality formulated in a hybrid nonlocal implicit discontinuous galerkin-cohesive band model framework. Int. J. Numer. Methods Eng. 113:3 (2018), 374–410, 10.1002/nme.5618.
Ling, C., Forest, S., Besson, J., Tanguy, B., Latourte, F., A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals. International Journal of Solids and Structures 134 (2018), 43–69, 10.1016/j.ijsolstr.2017.10.013 http://www.sciencedirect.com/science/article/pii/S0020768317304742.
Linse, T., Hütter, G., Kuna, M., Simulation of crack propagation using a gradient-enriched ductile damage model based on dilatational strain. Engineering Fracture Mechanics 95 (2012), 13–28, 10.1016/j.engfracmech.2012.07.004 Cracks in Microstructures and Engineering Components http://www.sciencedirect.com/science/article/pii/S0013794412002809.
Miehe, C., Kienle, D., Aldakheel, F., Teichtmeister, S., Phase field modeling of fracture in porous plasticity: A variational gradient-extended eulerian framework for the macroscopic analysis of ductile failure. Computer Methods in Applied Mechanics and Engineering 312 (2016), 3–50, 10.1016/j.cma.2016.09.028 Phase Field Approaches to Fracture http://www.sciencedirect.com/science/article/pii/S0045782516305412.
Moran, B., Ortiz, M., Shih, C., Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int. J. Numer. Methods Eng. 29:3 (1990), 483–514.
Morin, L., Leblond, J.-B., Benzerga, A.A., Kondo, D., A unified criterion for the growth and coalescence of microvoids. Journal of the Mechanics and Physics of Solids 97 (2016), 19–36, 10.1016/j.jmps.2016.01.013 SI:Pierre Suquet Symposium http://www.sciencedirect.com/science/article/pii/S0022509616300436.
Nahshon, K., Hutchinson, J., Modification of the gurson model for shear failure. European Journal of Mechanics - A/Solids 27:1 (2008), 1–17, 10.1016/j.euromechsol.2007.08.002 http://www.sciencedirect.com/science/article/pii/S0997753807000721.
Needleman, A., Tvergaard, V., An analysis of ductile rupture in notched bars. J. Mech. Phys. Solids 32:6 (1984), 461–490, 10.1016/0022-5096(84)90031-0.
Nguyen, V.-D., Lani, F., Pardoen, T., Morelle, X., Noels, L., A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. International Journal of Solids and Structures 96 (2016), 192–216, 10.1016/j.ijsolstr.2016.06.008 http://www.sciencedirect.com/science/article/pii/S0020768316301238.
Nguyen, V.-D., Noels, L., Computational homogenization of cellular materials. International Journal of Solids and Structures 51:11 (2014), 2183–2203, 10.1016/j.ijsolstr.2014.02.029 http://www.sciencedirect.com/science/article/pii/S0020768314000778.
Nielsen, K.L., Tvergaard, V., Ductile shear failure or plug failure of spot welds modelled by modified Gurson model. Engineering Fracture Mechanics 77:7 (2010), 1031–1047, 10.1016/j.engfracmech.2010.02.031 http://www.sciencedirect.com/science/article/pii/S0013794410001128.
Papasidero, J., Doquet, V., Mohr, D., Determination of the effect of stress state on the onset of ductile fracture through tension-torsion experiments. Exp. Mech. 54:2 (2014), 137–151, 10.1007/s11340-013-9788-4.
Pardoen, T., Hutchinson, J., An extended model for void growth and coalescence. J. Mech. Phys. Solids 48:12 (2000), 2467–2512, 10.1016/S0022-5096(00)00019-3.
Pardoen, T., Hutchinson, J., Micromechanics-based model for trends in toughness of ductile metals. Acta Materialia 51:1 (2003), 133–148, 10.1016/S1359-6454(02)00386-5 http://www.sciencedirect.com/science/article/pii/S1359645402003865.
Peerlings, R., Geers, M., de Borst, R., Brekelmans, W., A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38:44 (2001), 7723–7746, 10.1016/S0020-7683(01)00087-7.
Peerlings, R., Massart, T., Geers, M., A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking. Computer Methods in Applied Mechanics and Engineering 193:30 (2004), 3403–3417, 10.1016/j.cma.2003.10.021 Computational Failure Mechanics http://www.sciencedirect.com/science/article/pii/S0045782504001380.
Peerlings, R.H.J., De Borst, R., Brekelmans, W.A.M., De Vree, J.H.P., Gradient enhanced damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering 39:19 (1996), 3391–3403 http://www.scopus.com/inward/record.url?eid=2-s2.0-0030267284&partnerID=tZOtx3y1.
Pineau, A., Benzerga, A., Pardoen, T., Failure of metals i: Brittle and ductile fracture. Acta Materialia 107 (2016), 424–483, 10.1016/j.actamat.2015.12.034 http://www.sciencedirect.com/science/article/pii/S1359645415301403.
Poh, L.H., Sun, G., Localizing gradient damage model with decreasing interactions. International Journal for Numerical Methods in Engineering 110:6 (2017), 503–522, 10.1002/nme.5364 https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.5364.
Ramaswamy, S., Aravas, N., Finite element implementation of gradient plasticity models part ii: gradient-dependent evolution equations. Comput. Methods Appl. Mech. Eng. 163:1 (1998), 33–53, 10.1016/S0045-7825(98)00027-9.
Reddi, D., Areej, V., Keralavarma, S., Ductile failure simulations using a multi-surface coupled damage-plasticity model. International Journal of Plasticity 118 (2019), 190–214, 10.1016/j.ijplas.2019.02.007 http://www.sciencedirect.com/science/article/pii/S0749641918307149.
Reusch, F., Hortig, C., Svendsen, B., Nonlocal modeling and simulation of ductile damage and failure in metal matrix composites. J. Eng. Mater. Technol., 130(2), 2008, 21009.
Reusch, F., Svendsen, B., Klingbeil, D., Local and non-local Gurson-based ductile damage and failure modelling at large deformation. European Journal of Mechanics - A/Solids 22:6 (2003), 779–792, 10.1016/S0997-7538(03)00070-6 http://www.sciencedirect.com/science/article/pii/S0997753803000706.
Reusch, F., Svendsen, B., Klingbeil, D., A non-local extension of Gurson-based ductile damage modeling. Computational Materials Science 26 (2003), 219–229, 10.1016/S0927-0256(02)00402-0 11th International Workshop on Computational Mechanics of Materials http://www.sciencedirect.com/science/article/pii/S0927025602004020.
Riks, E., An incremental approach to the solution of snapping and buckling problems. International Journal of Solids and Structures 15:7 (1979), 529–551, 10.1016/0020-7683(79)90081-7 http://www.sciencedirect.com/science/article/pii/0020768379900817.
Riks, E., On formulations of path-following techniques for structural stability analysis. Recon Technical Report N, 1992, NASA STI 931, 16346−+.
Scheyvaerts, F., Onck, P., Tekoğlu, C., Pardoen, T., The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension. Journal of the Mechanics and Physics of Solids 59:2 (2011), 373–397, 10.1016/j.jmps.2010.10.003 http://www.sciencedirect.com/science/article/pii/S0022509610002061.
Scheyvaerts, F., Pardoen, T., Onck, P., A new model for void coalescence by internal necking. Int. J. Damage Mech. 19:1 (2010), 95–126, 10.1177/1056789508101918.
Seidenfuss, M., Samal, M., Roos, E., On critical assessment of the use of local and nonlocal damage models for prediction of ductile crack growth and crack path in various loading and boundary conditions. International Journal of Solids and Structures 48:24 (2011), 3365–3381, 10.1016/j.ijsolstr.2011.08.006 http://www.sciencedirect.com/science/article/pii/S002076831100285X.
Springmann, M., Kuna, M., Identification of material parameters of the gurson tvergaard needleman model by combined experimental and numerical techniques. Computational Materials Science 33:4 (2005), 501–509, 10.1016/j.commatsci.2005.02.002 http://www.sciencedirect.com/science/article/pii/S0927025605000169.
Tekoğlu, C., Representative volume element calculations under constant stress triaxiality, lode parameter, and shear ratio. International Journal of Solids and Structures 51:25 (2014), 4544–4553, 10.1016/j.ijsolstr.2014.09.001 http://www.sciencedirect.com/science/article/pii/S0020768314003424.
Tekoğlu, C., Hutchinson, J.W., Pardoen, T., On localization and void coalescence as a precursor to ductile fracture. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2038), 2015, 20140121, 10.1098/rsta.2014.0121 https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2014.0121.
Tekoğlu, C., Leblond, J.-B., Pardoen, T., A criterion for the onset of void coalescence under combined tension and shear. Journal of the Mechanics and Physics of Solids 60:7 (2012), 1363–1381, 10.1016/j.jmps.2012.02.006 http://www.sciencedirect.com/science/article/pii/S0022509612000373.
Thomason, P., A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metallurgica 33:6 (1985), 1087–1095, 10.1016/0001-6160(85)90202-0 http://www.sciencedirect.com/science/article/pii/0001616085902020.
Thomason, P., Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids. Acta Metallurgica 33:6 (1985), 1079–1085, 10.1016/0001-6160(85)90201-9 http://www.sciencedirect.com/science/article/pii/0001616085902019.
Torki, M., Benzerga, A., Leblond, J.-B., On void coalescence under combined tension and shear. J. Appl. Mech., 82(7), 2015, 71005.
Torki, M., Tekoğlu, C., Leblond, J.-B., Benzerga, A., Theoretical and numerical analysis of void coalescence in porous ductile solids under arbitrary loadings. International Journal of Plasticity 91 (2017), 160–181, 10.1016/j.ijplas.2017.02.011 http://www.sciencedirect.com/science/article/pii/S0749641916302595.
Torki, M.E., A unified criterion for void growth and coalescence under combined tension and shear. International Journal of Plasticity 119 (2019), 57–84, 10.1016/j.ijplas.2019.02.002 http://www.sciencedirect.com/science/article/pii/S0749641918303152.
Torki, M.E., Benzerga, A.A., A mechanism of failure in shear bands. Extreme Mechanics Letters 23 (2018), 67–71, 10.1016/j.eml.2018.06.008 http://www.sciencedirect.com/science/article/pii/S2352431618300890.
Tvergaard, V., Needleman, A., Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica 32:1 (1984), 157–169, 10.1016/0001-6160(84)90213-X http://www.sciencedirect.com/science/article/pii/000161608490213X.
Tvergaard, V., Needleman, A., Effects of nonlocal damage in porous plastic solids. International Journal of Solids and Structures 32:8 (1995), 1063–1077, 10.1016/0020-7683(94)00185-Y http://www.sciencedirect.com/science/article/pii/002076839400185Y.
Vadillo, G., Reboul, J., Fernndez-Sez, J., A modified gurson model to account for the influence of the lode parameter at high triaxialities. European Journal of Mechanics - A/Solids 56 (2016), 31–44, 10.1016/j.euromechsol.2015.09.010 http://www.sciencedirect.com/science/article/pii/S099775381500131X.
Wu, L., Becker, G., Noels, L., Elastic damage to crack transition in a coupled non-local implicit discontinuous galerkin/extrinsic cohesive law framework. Computer Methods in Applied Mechanics and Engineering 279 (2014), 379–409, 10.1016/j.cma.2014.06.031 http://www.sciencedirect.com/science/article/pii/S0045782514002175.
Wu, L., Noels, L., Adam, L., Doghri, I., An implicit-gradient-enhanced incremental-secant mean-field homogenization scheme for elasto-plastic composites with damage. International Journal of Solids and Structures 50:24 (2013), 3843–3860, 10.1016/j.ijsolstr.2013.07.022 http://www.sciencedirect.com/science/article/pii/S0020768313003028.
Xue, L., Constitutive modeling of void shearing effect in ductile fracture of porous materials. Engineering Fracture Mechanics 75:11 (2008), 3343–3366, 10.1016/j.engfracmech.2007.07.022 Local Approach to Fracture (19862006): Selected papers from the 9th European Mechanics of Materials Conference http://www.sciencedirect.com/science/article/pii/S0013794407003220.
Xue, Z., Pontin, M., Zok, F., Hutchinson, J., Calibration procedures for a computational model of ductile fracture. Engineering Fracture Mechanics 77:3 (2010), 492–509, 10.1016/j.engfracmech.2009.10.007 http://www.sciencedirect.com/science/article/pii/S0013794409003233.
Zhang, Y., Lorentz, E., Besson, J., Ductile damage modelling with locking-free regularised gtn model. International Journal for Numerical Methods in Engineering 113:13 (2018), 1871–1903, 10.1002/nme.5722 https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5722.
Zhang, Z., Thaulow, C., degrd, J., A complete Gurson model approach for ductile fracture. Eng. Fract. Mech. 67:2 (2000), 155–168, 10.1016/S0013-7944(00)00055-2.
Zhu, Y., Engelhardt, M.D., Kiran, R., Combined effects of triaxiality, lode parameter and shear stress on void growth and coalescence. Engineering Fracture Mechanics 199 (2018), 410–437, 10.1016/j.engfracmech.2018.06.008 http://www.sciencedirect.com/science/article/pii/S0013794418300766.
Zybell, L., Hütter, G., Linse, T., Mühlich, U., Kuna, M., Size effects in ductile failure of porous materials containing two populations of voids. European Journal of Mechanics - A/Solids 45 (2014), 8–19, 10.1016/j.euromechsol.2013.11.006 http://www.sciencedirect.com/science/article/pii/S0997753813001411.