Chown, Justin; Fakultät für Mathematik, Ruhr-Universität Bochum, Bochum, Germany
Heuchenne, Cédric ; Université de Liège - ULiège > HEC Liège : UER > UER Opérations: Statistique appl. à la gest. et à l'économie
Van Keilegom, Ingrid; ORSTAT, KU Leuven, Louvain, Belgium
Language :
English
Title :
The nonparametric location-scale mixture cure model
Publication date :
2020
Journal title :
TEST
ISSN :
1133-0686
eISSN :
1863-8260
Publisher :
Springer
Volume :
29
Pages :
1008-1028
Peer reviewed :
Peer reviewed
Funders :
Bundesministerium für Bildung und Forschung, BMBF694409European Research Council, ERCSFB 823P7/06German-Israeli Foundation for Scientific Research and Development, GIF
Aitkin M, Anderson D, Francis B, Hinde J (1989) Statistical modelling in GLIM. Clarendon Press, New York
Beran R (1981) Nonparametric regression with randomly censored survival data. Technical report
Boag J (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc Ser B Stat Methodol 11(1):15–44
Cai C, Zou Y, Peng Y, Zhang J (2012) smcure: an r-package for estimating semiparametric mixture cure models. Comput Methods Programs Biomed 108(3):1255–1260 DOI: 10.1016/j.cmpb.2012.08.013
Collett D (1994) Modelling survival data in medical research. CRC monographs on statistics & applied probability. CRC Press, Boca Raton DOI: 10.1007/978-1-4899-3115-3
Dabrowska D (1987) Non-parametric regression with censored survival time data. Scand J Stat 14(3):181–197
Farewell V (1986) Mixture models in survival analysis: are they worth the risk? Can J Stat 14(3):257–262 DOI: 10.2307/3314804
González-Manteiga W, Crujeiras R (2013) An updated review of goodness-of-fit tests for regression models. TEST 22(3):361–411 DOI: 10.1007/s11749-013-0327-5
Harris E, Albert A (1990) Survivorship analysis for clinical studies. Statistics: a series of textbooks and monographs. CRC Press, Boca Raton
Haybittle J (1959) The estimation of the proportion of patients cured after treatment for cancer of the breast. Br J Radiol 32(383):725–733 DOI: 10.1259/0007-1285-32-383-725
Haybittle J (1965) A two-parameter model for the survival curve of treated cancer patients. J Am Stat Assoc 60(309):16–26 DOI: 10.1080/01621459.1965.10480772
Kuk A, Chen C (1992) A mixture model combining logistic regression with proportional hazards regression. Biometrika 79(3):531–541 DOI: 10.1093/biomet/79.3.531
Lawless J (1982) Statistical models and methods for lifetime data. Wiley series in probability and mathematical statistics: applied probability and statistics. Wiley, New York
Lázaro E, Armero C, Gómez-Rubio V (2019) Approximate Bayesian inference for mixture cure models. TEST
Li G, Datta S (2001) A bootstrap approach to nonparametric regression for right censored data. Ann Inst Stat Math 53(4):708–729 DOI: 10.1023/A:1014644700806
López-Cheda A, Cao R, Jácome M, Van Keilegom I (2017) Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models. Comput Stat Data Anal 105:144–165 DOI: 10.1016/j.csda.2016.08.002
Lu W (2008) Maximum likelihood estimation in the proportional hazards cure model. Ann Inst Stat Math 60(3):545–574 DOI: 10.1007/s10463-007-0120-x
Lu W (2010) Efficient estimation for an accelerated failure time model with a cure fraction. Stat Sin 20(2):661–674
Patilea V, Van Keilegom I (2019) A general approach for cure models in survival analysis. Ann Stat (to appear)
Portier F, Van Keilegom I, El Ghouch A (2017) On an extension of the promotion time cure model. Ann Stat (under revision)
Sinha D, Chen M, Ibrahim J (2003) Bayesian inference for survival data with a surviving fraction. In: Kolassa JE, Oakes D (eds) Crossing boundaries: statistical essays in Honor of Jack Hall. Lecture notes-monograph series. Institute of Mathematical Statistics, Beachwood, pp 117–138 DOI: 10.1214/lnms/1215092394
Stone C (1977) Consistent nonparametric regression. Ann Stat 5(4):595–620 DOI: 10.1214/aos/1176343886
Sy J, Taylor J (2000) Estimation in a Cox proportional hazards cure model. Biometrics 56(1):227–236 DOI: 10.1111/j.0006-341X.2000.00227.x
Taylor J (1995) Semi-parametric estimation in failure time mixture models. Biometrics 51(3):899–907 DOI: 10.2307/2532991
Tsodikov A (1998) A proportional hazards model taking account of long-term survivors. Biometrics 54(4):1508–1516 DOI: 10.2307/2533675
Tsodikov A, Ibrahim J, Yakovlev A (2003) Estimating cure rates from survival data: an alternative to two-component mixture models. J Am Stat Assoc 98(464):1063–1078 DOI: 10.1198/01622145030000001007
Van Keilegom I, Akritas M (1999) Transfer of tail information in censored regression models. Ann Stat 27(5):1745–1784 DOI: 10.1214/aos/1017939150
Wang Y, Klijn J, Zhang Y, Sieuwerts A, Look M, Yang F, Talantov D, Timmermans M, Meijer-van Gelder M, Yu J, Jatkoe T, Berns E, Atkins D, Foekens J (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679 DOI: 10.1016/S0140-6736(05)17947-1
Xu J, Peng Y (2014) Nonparametric cure rate estimation with covariates. Can J Stat 42(1):1–17 DOI: 10.1002/cjs.11197
Yakovlev A, Tsodikov A (1996) Stochastic models of tumor latency and their biostatistical applications. Series in mathematical biology and medicine. World Scientific, Singapore DOI: 10.1142/2420
Yakovlev A, Cantor A, Shuster J (1994) Parametric versus non-parametric methods for estimating cure rates based on censored survival data. Stat Med 13(9):983–986 DOI: 10.1002/sim.4780130908
Yin G, Ibrahim J (2005) Cure rate models: a unified approach. Can J Stat 33(4):559–570 DOI: 10.1002/cjs.5550330407
Zeng D, Yin G, Ibrahim J (2006) Semiparametric transformation models for survival data with a cure fraction. J Am Stat Assoc 101(474):670–684 DOI: 10.1198/016214505000001122