Chown, Justin; Fakultät für Mathematik, Ruhr-Universität Bochum, Bochum, Germany
Heuchenne, Cédric ; Université de Liège - ULiège > HEC Liège : UER > UER Opérations: Statistique appl. à la gest. et à l'économie
Van Keilegom, Ingrid; ORSTAT, KU Leuven, Louvain, Belgium
Language :
English
Title :
The nonparametric location-scale mixture cure model
Publication date :
2020
Journal title :
TEST
ISSN :
1133-0686
eISSN :
1863-8260
Publisher :
Springer
Volume :
29
Pages :
1008-1028
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Bundesministerium für Bildung und Forschung, BMBF694409European Research Council, ERCSFB 823P7/06German-Israeli Foundation for Scientific Research and Development, GIF
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aitkin M, Anderson D, Francis B, Hinde J (1989) Statistical modelling in GLIM. Clarendon Press, New York
Beran R (1981) Nonparametric regression with randomly censored survival data. Technical report
Boag J (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc Ser B Stat Methodol 11(1):15–44
Cai C, Zou Y, Peng Y, Zhang J (2012) smcure: an r-package for estimating semiparametric mixture cure models. Comput Methods Programs Biomed 108(3):1255–1260 DOI: 10.1016/j.cmpb.2012.08.013
Collett D (1994) Modelling survival data in medical research. CRC monographs on statistics & applied probability. CRC Press, Boca Raton DOI: 10.1007/978-1-4899-3115-3
Dabrowska D (1987) Non-parametric regression with censored survival time data. Scand J Stat 14(3):181–197
Farewell V (1986) Mixture models in survival analysis: are they worth the risk? Can J Stat 14(3):257–262 DOI: 10.2307/3314804
González-Manteiga W, Crujeiras R (2013) An updated review of goodness-of-fit tests for regression models. TEST 22(3):361–411 DOI: 10.1007/s11749-013-0327-5
Harris E, Albert A (1990) Survivorship analysis for clinical studies. Statistics: a series of textbooks and monographs. CRC Press, Boca Raton
Haybittle J (1959) The estimation of the proportion of patients cured after treatment for cancer of the breast. Br J Radiol 32(383):725–733 DOI: 10.1259/0007-1285-32-383-725
Haybittle J (1965) A two-parameter model for the survival curve of treated cancer patients. J Am Stat Assoc 60(309):16–26 DOI: 10.1080/01621459.1965.10480772
Kuk A, Chen C (1992) A mixture model combining logistic regression with proportional hazards regression. Biometrika 79(3):531–541 DOI: 10.1093/biomet/79.3.531
Lawless J (1982) Statistical models and methods for lifetime data. Wiley series in probability and mathematical statistics: applied probability and statistics. Wiley, New York
Lázaro E, Armero C, Gómez-Rubio V (2019) Approximate Bayesian inference for mixture cure models. TEST
Li G, Datta S (2001) A bootstrap approach to nonparametric regression for right censored data. Ann Inst Stat Math 53(4):708–729 DOI: 10.1023/A:1014644700806
López-Cheda A, Cao R, Jácome M, Van Keilegom I (2017) Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models. Comput Stat Data Anal 105:144–165 DOI: 10.1016/j.csda.2016.08.002
Lu W (2008) Maximum likelihood estimation in the proportional hazards cure model. Ann Inst Stat Math 60(3):545–574 DOI: 10.1007/s10463-007-0120-x
Lu W (2010) Efficient estimation for an accelerated failure time model with a cure fraction. Stat Sin 20(2):661–674
Patilea V, Van Keilegom I (2019) A general approach for cure models in survival analysis. Ann Stat (to appear)
Portier F, Van Keilegom I, El Ghouch A (2017) On an extension of the promotion time cure model. Ann Stat (under revision)
Sinha D, Chen M, Ibrahim J (2003) Bayesian inference for survival data with a surviving fraction. In: Kolassa JE, Oakes D (eds) Crossing boundaries: statistical essays in Honor of Jack Hall. Lecture notes-monograph series. Institute of Mathematical Statistics, Beachwood, pp 117–138 DOI: 10.1214/lnms/1215092394
Stone C (1977) Consistent nonparametric regression. Ann Stat 5(4):595–620 DOI: 10.1214/aos/1176343886
Sy J, Taylor J (2000) Estimation in a Cox proportional hazards cure model. Biometrics 56(1):227–236 DOI: 10.1111/j.0006-341X.2000.00227.x
Taylor J (1995) Semi-parametric estimation in failure time mixture models. Biometrics 51(3):899–907 DOI: 10.2307/2532991
Tsodikov A (1998) A proportional hazards model taking account of long-term survivors. Biometrics 54(4):1508–1516 DOI: 10.2307/2533675
Tsodikov A, Ibrahim J, Yakovlev A (2003) Estimating cure rates from survival data: an alternative to two-component mixture models. J Am Stat Assoc 98(464):1063–1078 DOI: 10.1198/01622145030000001007
Van Keilegom I, Akritas M (1999) Transfer of tail information in censored regression models. Ann Stat 27(5):1745–1784 DOI: 10.1214/aos/1017939150
Wang Y, Klijn J, Zhang Y, Sieuwerts A, Look M, Yang F, Talantov D, Timmermans M, Meijer-van Gelder M, Yu J, Jatkoe T, Berns E, Atkins D, Foekens J (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679 DOI: 10.1016/S0140-6736(05)17947-1
Xu J, Peng Y (2014) Nonparametric cure rate estimation with covariates. Can J Stat 42(1):1–17 DOI: 10.1002/cjs.11197
Yakovlev A, Tsodikov A (1996) Stochastic models of tumor latency and their biostatistical applications. Series in mathematical biology and medicine. World Scientific, Singapore DOI: 10.1142/2420
Yakovlev A, Cantor A, Shuster J (1994) Parametric versus non-parametric methods for estimating cure rates based on censored survival data. Stat Med 13(9):983–986 DOI: 10.1002/sim.4780130908
Yin G, Ibrahim J (2005) Cure rate models: a unified approach. Can J Stat 33(4):559–570 DOI: 10.1002/cjs.5550330407
Zeng D, Yin G, Ibrahim J (2006) Semiparametric transformation models for survival data with a cure fraction. J Am Stat Assoc 101(474):670–684 DOI: 10.1198/016214505000001122
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.