[en] The enzymatic access to nucleotide-activated oligosaccharides by a glycosidase-catalyzed transglycosylation reaction was explored. The nucleotide sugars UDP-GlcNAc and UDP-Glc were tested as acceptor substrates for beta-galactosidase from Bacillus circulans using lactose as donor substrate. The UDP-disaccharides Gal(beta1-4)GlcNAc(alpha1-UDP) (UDP-LacNAc) and Gal(beta1-4)Glc(alpha1-UDP) (UDP-Lac) and the UDP-trisaccharides Gal(beta1-4)Gal(beta1-4)GlcNAc(alpha1-UDP and Gal(beta1-4)Gal(beta1-4)Glc(alpha1-UDP) were formed stereo- and regioselectively. Their chemical structures were characterized by 1H and 13C NMR spectroscopy and fast atom bombardment mass spectrometry. The synthesis in frozen solution at -5 degrees C instead of 30 degrees C gave significantly higher product yields with respect to the acceptor substrates. This was due to a remarkably higher product stability in the small liquid phase of the frozen reaction mixture. Under optimized conditions, at -5 degrees C and pH 4.5 with 500 mM lactose and 100 mM UDP-GlcNAc, an overall yield of 8.2% (81.8 micromol, 62.8 mg with 100% purity) for Gal(beta1-4)GlcNAc(alpha1-UDP) and 3.6% (36.1 micromol, 35 mg with 96% purity) for Gal(beta1-4)Gal(beta1-4)GlcNAc(alpha1-UDP) was obtained. UDP-Glc as acceptor gave an overall yield of 5.0% (41.3 micromol, 32.3 mg with 93% purity) for Gal(beta1-4)Glc(alpha1-UDP) and 1.6% (13.0 micromol, 12.2 mg with 95% purity) for Gal(beta1-4)Gal(beta1-4)Glc(alpha1-UDP). The analysis of other nucleotide sugars revealed UDP-Gal, UDP-GalNAc, UDP-Xyl and dTDP-, CDP-, ADP- and GDP-Glc as further acceptor substrates for beta-galactosidase from Bacillus circulans.
Elling L., Kula M.-R. (1993) Purification of sucrose synthase from rice and its protein-chemical characterization. J. Biotechnol. 29:277-286.
Elling L., Zervosen A., Gutiérrez Gallego R., Nieder V., Malissard M., Berger E.G., Vliegenthart J.F.G., Kamerling J.P. (1999) UDP-N-acetyl-α-D-glucosamine as acceptor substrate of β-1,4-galactosyltransferase. Enzymatic synthesis of UDP-N-acetyllactosamine. Glycoconjugate. J. 16:327-336.
Hänsler M., Jakubke H.-D. (1996) Reverse action of hydrolysis in frozen aqueous solutions. Amino Acids 11:379-395.
Hård K., Van Zadelhoff G., Moonen P., Kamerling J.P., Vliegenthart J.F.G. (1992) The Asn-linked carbohydrate chains of human Tamm-Horsfall glycoprotein of one male. Novel sulfated and novel N-acetylgalactosamine-containing N-linked carbohydrate chains. Eur. J. Biochem. 209:895-915.
Hartmann E., König H. (1989) Uridine and dolichyl diphosphate activated oligosaccharides are intermediates in the biosynthesis of the S-layer glycoprotein of Methanobacterium fervidus. Arch. Microbiol. 151:274-281.
Hartmann E., Messner P., Allmeier G., König H. (1993) Proposed pathway for biosynthesis of the S-layer glycoprotein of Bacillus alvei. J. Bacteriol. 175:4515-4519.
Jakubke H.-D., Elchhorn U., Hänsler M., Ullmann D. (1996) Non-conventional enzyme catalysis: Application of proteases and zymogens in biotransformations. Biol. Chem. 377:455-464.
Jourdian G.W., Distler J.J. (1973) Formation in vitro of uridine-5′-(oligosaccharide)-1-pyrophosphates. J. Biol. Chem. 248:6781-6787.
Jourdian G.W., Shimizu F., Roseman S. (1961) Isolation of nucleotide-oligosaccharides containing sialic acid. Fed. Proc. 20:161.
Kobata A. (1962) Isolation and identification of two novel uridine nucleotide oligosaccharide conjugates from human milk. Biochem. Biophys. Res. Commun. 7:346-350.
Kobata A. (1963) The acid-soluble nucleotides of milk. II. Isolation and identification of two novel uridine nucleotide oligosaccharide conjugates from human milk. J. Biochem. 53:167-175.
Kobata A. (1966) The acid-soluble nucleotides of milk IV. The chemical structure of UDP-X3. J. Biochem. 59:63-66.
Kobata A. (1966) The acid-soluble nucleotides of milk III. Occurence of UDP-N-acetyllactosamine and UDP-xylose in pig's milk and colostrum. Biochim. Biophys. Acta 107:405-413.
König H., Kandler O., Hammes W. (1989) Biosynthesis of pseudomurein: Isolation of putative precursors from Methanobacterium thermaautotrophicum. Can. J. Microbiol. 35:176-181.
König H., Hartmann E., Kärcher U. (1994) Pathways and principles of the biosynthesis of methanobacterial cell wall polymers. Syst. Appl. Microbiol. 16:510-517.
Nakanishi Y., Shimizu S., Takahashi N., Sugiyama M., Suzuki S. (1967) Structure and distribution of a disaccharide-carrying nucleotide and related nucleotides in hen oviduct. J. Biol. Chem. 242:967-976.
Summers M.F., Marzilli L.G., Bax A. (1986) Complete 1H and 13C assignments of Coenzyme B12 through the use of new two-dimensional NMR experiments. J. Am. Chem. Soc. 108:4285-4294.
Suzuki S. (1962) A novel uridine nucleotide containing N-acetylglucosamine and galactose. J. Biol. Chem. 237:1393.
Usui T., Morimoto S., Hayakawa Y., Kawaguchi M., Murata T., Matahiran Y., Nishida Y. (1996) Regioselectivity of β-D-galactosyl-disaccharide formation using the β-D-galactosidase from Bacillus circulans. Carbohydr. Res. 285:29-39.
Vetere A., Paoletti S. (1996) High-yield synthesis of N-acetyllactosamine by regioselective transglycosylation. Biochem. Biophys. Res. Commun. 219:6-13.
Yanahira S., Kobayashi T., Suguri T., Nakakoshi M., Miura S., Ishikawa H., Nakajima I. (1995) Formation of oligosaccharides from lactose by Bacillus circulans β-Galactosidase. Biosc. Biotechnol. Biochem. 59:1021-1026.