Article (Scientific journals)
Two critical localization lengths in the Anderson transition on random graphs
García-Mata, Ignacio; Martin, John; Dubertrand, Rémy et al.
2020In Physical Review Research, 2, p. 012020
Peer Reviewed verified by ORBi
 

Files


Full Text
PhysRevResearch2_012020(2020).pdf
Publisher postprint (735.77 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] We present a full description of the nonergodic properties of wave functions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths: the largest one describes localization along rare branches and diverges with a critical exponent ν∥ = 1 at the transition. The second length, which describes localization along typical branches, reaches at the transition a finite universal value (which depends only on the connectivity of the graph), with a singularity controlled by a new critical exponent ν⊥ = 1/2. We show numerically that these two localization lengths control the finite-size scaling properties of key observables: wave-function moments, correlation functions, and spectral statistics. Our results are identical to the theoretical predictions for the typical localization length in the many-body localization transition, with the same critical exponent. This strongly suggests that the two transitions are in the same universality class and that our techniques could be directly applied in this context.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
García-Mata, Ignacio;  Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), CONICET–UNMdP, Funes 3350, B7602AYL Mar del Plata, Argentina
Martin, John  ;  Université de Liège - ULiège > Département de physique > Optique quantique
Dubertrand, Rémy;  Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany and Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
Giraud, Olivier;  LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
Georgeot, Bertrand;  Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, France
Lemarié, Gabriel;  Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, France
Language :
English
Title :
Two critical localization lengths in the Anderson transition on random graphs
Publication date :
January 2020
Journal title :
Physical Review Research
eISSN :
2643-1564
Publisher :
American Physical Society (APS), College Park, United States - Maryland
Volume :
2
Pages :
012020(R)
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Available on ORBi :
since 22 January 2020

Statistics


Number of views
67 (3 by ULiège)
Number of downloads
56 (0 by ULiège)

Scopus citations®
 
48
Scopus citations®
without self-citations
39
OpenCitations
 
25
OpenAlex citations
 
32

Bibliography


Similar publications



Contact ORBi