[en] We present a full description of the nonergodic properties of wave functions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths: the largest one describes localization along rare branches and diverges with a critical exponent ν∥ = 1 at the transition. The second length, which describes localization along typical branches, reaches at the transition a finite universal value (which depends only on the connectivity of the graph), with a singularity controlled by a new critical exponent ν⊥ = 1/2. We show numerically that these two localization lengths control the finite-size scaling properties of key observables: wave-function moments, correlation functions, and spectral statistics. Our results are identical to the theoretical predictions for the typical localization length in the many-body localization transition, with the same critical exponent. This strongly suggests that the two transitions are in the same universality class and that our techniques could be directly applied in this context.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
García-Mata, Ignacio; Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), CONICET–UNMdP, Funes 3350, B7602AYL Mar del Plata, Argentina
Martin, John ; Université de Liège - ULiège > Département de physique > Optique quantique
Dubertrand, Rémy; Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany and Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov, Quasiparticle Lifetime in a Finite System: A Nonperturbative Approach, Phys. Rev. Lett. 78, 2803 (1997). PRLTAO 0031-9007 10.1103/PhysRevLett.78.2803
D. J. Luitz, N. Laflorencie, and F. Alet, Many-body localization edge in the random-field Heisenberg chain, Phys. Rev. B 91, 081103 (R) (2015). PRBMDO 1098-0121 10.1103/PhysRevB.91.081103
A. De Luca and A. Scardicchio, Ergodicity breaking in a model showing many-body localization, Europhys. Lett. 101, 37003 (2013). EULEEJ 0295-5075 10.1209/0295-5075/101/37003
M. Pino, L. B. Ioffe, and B. L. Altshuler, Nonergodic metallic and insulating phases of Josephson junction chains, Proc. Natl. Acad. Sci. USA 113, 536 (2016). PNASA6 0027-8424 10.1073/pnas.1520033113
E. J. Torres-Herrera and L. F. Santos, Extended nonergodic states in disordered many-body quantum systems, Ann. Phys. (Berlin) 529, 1600284 (2017). ANPYA2 0003-3804 10.1002/andp.201600284
D. J. Luitz and Y. B. Lev, The ergodic side of the many-body localization transition, Ann. Phys. (Berlin) 529, 1600350 (2017). ANPYA2 0003-3804 10.1002/andp.201600350
M. Pino, V. E. Kravtsov, B. L. Altshuler, and L. B. Ioffe, Multifractal metal in a disordered Josephson junctions array, Phys. Rev. B 96, 214205 (2017). 2469-9950 10.1103/PhysRevB.96.214205
W. Buijsman, V. Gritsev, and V. Cheianov, Many-body localization in the Fock space of natural orbitals, SciPost Phys. 4, 38 (2018). 2542-4653 10.21468/SciPostPhys.4.6.038
C. Monthus, Many-body-localization transition: Strong multifractality spectrum for matrix elements of local operators, J. Stat. Mech. (2016) 073301. 1742-5468 10.1088/1742-5468/2016/07/073301
N. Macé, F. Alet, and N. Laflorencie, Multifractal Scalings Across the Many-Body Localization Transition, Phys. Rev. Lett. 123, 180601 (2019). 10.1103/PhysRevLett.123.180601
D. J. Luitz, F. Alet, and N. Laflorencie, Universal Behavior beyond Multifractality in Quantum Many-Body Systems, Phys. Rev. Lett. 112, 057203 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.057203
Y. Y. Atas and E. Bogomolny, Multifractality of eigenfunctions in spin chains, Phys. Rev. E 86, 021104 (2012). PLEEE8 1539-3755 10.1103/PhysRevE.86.021104
G. Misguich, V. Pasquier, and M. Oshikawa, Finite-size scaling of the Shannon-Rényi entropy in two-dimensional systems with spontaneously broken continuous symmetry, Phys. Rev. B 95, 195161 (2017). 2469-9950 10.1103/PhysRevB.95.195161
S. Roy, J. T. Chalker, and D. E. Logan, Percolation in Fock space as a proxy for many-body localization, Phys. Rev. B 99, 104206 (2019). 2469-9950 10.1103/PhysRevB.99.104206
D. J. Luitz and N. Laflorencie, Quantum Monte Carlo detection of SU(2) symmetry breaking in the participation entropies of line subsystems, SciPost Phys. 2, 011 (2017). 2542-4653 10.21468/SciPostPhys.2.2.011
J. Lindinger, A. Buchleitner, and A. Rodríguez, Many-Body Multifractality throughout Bosonic Superfluid and Mott Insulator Phases, Phys. Rev. Lett. 122, 106603 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.122.106603
D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states, Ann. Phys. (Amsterdam) 321, 1126 (2006). APNYA6 0003-4916 10.1016/j.aop.2005.11.014
I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting Electrons in Disordered Wires: Anderson Localization and Low-(Equation presented) Transport, Phys. Rev. Lett. 95, 206603 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.206603
R. Nandkishore and D. A Huse, Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys. 6, 15 (2015). 1947-5454 10.1146/annurev-conmatphys-031214-014726
D. A. Abanin and Z. Papić, Recent progress in many-body localization, Ann. Phys. (Berlin) 529, 1700169 (2017). ANPYA2 0003-3804 10.1002/andp.201700169
F. Alet and N. Laflorencie, Many-body localization: An introduction and selected topics, C. R. Phys. 19, 498 (2018). CRPOBN 1631-0705 10.1016/j.crhy.2018.03.003
D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium: Many-body localization, thermalization, and entanglement, Rev. Mod. Phys. 91, 021001 (2019). 10.1103/RevModPhys.91.021001
R. Abou-Chacra, D. J. Thouless, and P. W. Anderson, A selfconsistent theory of localization, J. Phys. C 6, 1734 (1973). JPSOAW 0022-3719 10.1088/0022-3719/6/10/009
C. Castellani, C. Di Castro, and L. Peliti, On the upper critical dimension in Anderson localisation, J. Phys. A 19, L1099 (1986). JPHAC5 0305-4470 10.1088/0305-4470/19/17/009
A. D. Mirlin and Y. V. Fyodorov, Distribution of Local Densities of States, Order Parameter Function, and Critical behavior Near the Anderson Transition, Phys. Rev. Lett. 72, 526 (1994). PRLTAO 0031-9007 10.1103/PhysRevLett.72.526
C. Monthus and T. Garel, Anderson transition on the Cayley tree as a traveling wave critical point for various probability distributions, J. Phys. A 42, 075002 (2008). 1751-8113 10.1088/1751-8113/42/7/075002
G. Biroli, A. C. Ribeiro-Teixeira, and M. Tarzia, Difference between level statistics, ergodicity and localization transitions on the Bethe lattice, arXiv:1211.7334.
A. De Luca, B. L. Altshuler, V. E. Kravtsov, and A. Scardicchio, Anderson Localization on the Bethe Lattice: Nonergodicity of Extended States, Phys. Rev. Lett. 113, 046806 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.113.046806
C. Monthus and T. Garel, Anderson Localization on the Cayley tree: Multifractal statistics of the transmission at criticality and off criticality, J. Phys. A 44, 145001 (2011). 1751-8113 10.1088/1751-8113/44/14/145001
D. Facoetti, P. Vivo, and G. Biroli, From non-ergodic eigenvectors to local resolvent statistics and back: A random matrix perspective, Europhys. Lett. 115, 47003 (2016). EULEEJ 0295-5075 10.1209/0295-5075/115/47003
M. Sonner, K. S. Tikhonov, and A. D. Mirlin, Multifractality of wave functions on a Cayley tree: From root to leaves, Phys. Rev. B 96, 214204 (2017). 2469-9950 10.1103/PhysRevB.96.214204
G. Parisi, S. Pascazio, F. Pietracaprina, V. Ros, and A. Scardicchio, On the Anderson transition on the Bethe lattice, J. Phys. A: Math. Theor. 53, 014003 (2018). 10.1088/1751-8121/ab56e8
V. E. Kravtsov, B. L. Altshuler, and L. B. Ioffe, Non-ergodic delocalized phase in Anderson model on Bethe lattice and regular graph, Ann. Phys. (Amsterdam) 389, 148 (2018). APNYA6 0003-4916 10.1016/j.aop.2017.12.009
S. Savitz, C. Peng, and G. Refael, Anderson localization on the Bethe lattice using cages and the Wegner flow, Phys. Rev. B 100, 094201 (2019). 10.1103/PhysRevB.100.094201
K. S. Tikhonov and A. D. Mirlin, Fractality of wave functions on a Cayley tree: Difference between tree and locally treelike graph without boundary, Phys. Rev. B 94, 184203 (2016). 2469-9950 10.1103/PhysRevB.94.184203
G. Biroli and M. Tarzia, Delocalization and ergodicity of the Anderson model on Bethe lattices, arXiv:1810.07545.
K. S. Tikhonov, A. D. Mirlin, and M. A. Skvortsov, Anderson localization and ergodicity on random regular graphs, Phys. Rev. B 94, 220203 (R) (2016). 2469-9950 10.1103/PhysRevB.94.220203
I. García-Mata, O. Giraud, B. Georgeot, J. Martin, R. Dubertrand, and G. Lemarié, Scaling Theory of the Anderson Transition in Random Graphs: Ergodicity and Universality, Phys. Rev. Lett. 118, 166801 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.118.166801
K. S. Tikhonov and A. D. Mirlin, Statistics of eigenstates near the localization transition on random regular graphs, Phys. Rev. B 99, 024202 (2019). 2469-9950 10.1103/PhysRevB.99.024202
K. S. Tikhonov and A. D. Mirlin, Critical behavior at the localization transition on random regular graphs, Phys. Rev. B 99, 214202 (2019). 10.1103/PhysRevB.99.214202
V. E. Kravtsov, I. M. Khaymovich, E. Cuevas, and M. Amini, A random matrix model with localization and ergodic transitions, New J. Phys. 17, 122002 (2015). NJOPFM 1367-2630 10.1088/1367-2630/17/12/122002
B. L. Altshuler, E. Cuevas, L. B. Ioffe, and V. E. Kravtsov, Nonergodic Phases in Strongly Disordered Random Regular Graphs, Phys. Rev. Lett. 117, 156601 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.117.156601
C. Monthus, Localization transition in random Lévy matrices: Multifractality of eigenvectors in the localized phase and at criticality, J. Stat. Mech. (2016) 093304. 1742-5468 10.1088/1742-5468/2016/09/093304
G. De Tomasi, M. Amini, S. Bera, I. Khaymovich, and V. E. Kravtsov, Survival probability in generalized Rosenzweig-Porter random matrix ensemble, SciPost Phys. 6, 014 (2019). 10.21468/SciPostPhys.6.1.014
S. Bera, G. De Tomasi, I. M. Khaymovich, and A. Scardicchio, Return probability for the Anderson model on the random regular graph, Phys. Rev. B 98, 134205 (2018). 2469-9950 10.1103/PhysRevB.98.134205
G. Biroli and M. Tarzia, Delocalized glassy dynamics and many-body localization, Phys. Rev. B 96, 201114 (R) (2017). 2469-9950 10.1103/PhysRevB.96.201114
F. L. Metz and I. P. Castillo, Level compressibility for the Anderson model on regular random graphs and the eigenvalue statistics in the extended phase, Phys. Rev. B 96, 064202 (2017). 2469-9950 10.1103/PhysRevB.96.064202
F. L. Metz, G. Parisi, and L. Leuzzi, Finite-size corrections to the spectrum of regular random graphs: An analytical solution, Phys. Rev. E 90, 052109 (2014). PLEEE8 1539-3755 10.1103/PhysRevE.90.052109
A. Kosior and K. Sacha, Localization in random fractal lattices, Phys. Rev. B 95, 104206 (2017). 2469-9950 10.1103/PhysRevB.95.104206
F. L. Metz and I. Pérez Castillo, Large Deviation Function for the Number of Eigenvalues of Sparse Random Graphs Inside an Interval, Phys. Rev. Lett. 117, 104101 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.117.104101
M. Pino, J. Tabanera, and P. Serna, From ergodic to non-ergodic chaos in Rosenzweig-Porter model, J. Phys. A: Math. Theor. 52 475101 (2019). 10.1088/1751-8121/ab4b76
J. D. Miller and B. Derrida, Weak-disorder expansion for the Anderson model on a tree, J. Stat. Phys. 75, 357 (1994). JSTPBS 0022-4715 10.1007/BF02186867
A. M. Somoza, M. Ortuno, and J. Prior, Universal Distribution Functions in Two-Dimensional Localized Systems, Phys. Rev. Lett. 99, 116602 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.99.116602
C. Monthus and T. Garel, Statistics of renormalized on-site energies and renormalized hoppings for Anderson localization in two and three dimensions, Phys. Rev. B 80, 024203 (2009). PRBMDO 1098-0121 10.1103/PhysRevB.80.024203
B. Derrida and H. Spohn, Polymers on disordered trees, spin glasses, and traveling waves, J. Stat. Phys. 51, 817 (1988). JSTPBS 0022-4715 10.1007/BF01014886
J. Cook and B. Derrida, Directed polymers in a random medium: 1/(Equation presented) expansion, Europhys. Lett. 10, 195 (1989). EULEEJ 0295-5075 10.1209/0295-5075/10/3/002
M. V. Feigel'man, L. B. Ioffe, and M. Mézard, Superconductor-insulator transition and energy localization, Phys. Rev. B 82, 184534 (2010). PRBMDO 1098-0121 10.1103/PhysRevB.82.184534
M. R. Zirnbauer, Localization transition on the Bethe lattice, Phys. Rev. B 34, 6394 (1986). PRBMDO 0163-1829 10.1103/PhysRevB.34.6394
A. D. Mirlin and Y. V. Fyodorov, Universality of level correlation function of sparse random matrices, J. Phys. A 24, 2273 (1991). JPHAC5 0305-4470 10.1088/0305-4470/24/10/016
Y. V. Fyodorov and A. D. Mirlin, Localization in Ensemble of Sparse Random Matrices, Phys. Rev. Lett. 67, 2049 (1991). PRLTAO 0031-9007 10.1103/PhysRevLett.67.2049
Y. V. Fyodorov, A. D. Mirlin, and H.-J. Sommers, A novel field theoretical approach to the Anderson localization: Sparse random hopping model, J. Phys. I France 2, 1571 (1992). JPGCE8 1155-4304 10.1051/jp1:1992229
M. Aizenman and S. Warzel, Absence of mobility edge for the Anderson random potential on tree graphs at weak disorder, Europhys. Lett. 96, 37004 (2011). EULEEJ 0295-5075 10.1209/0295-5075/96/37004
M. Aizenman and S. Warzel, Extended States in a Lifshitz Tail Regime for Random Schrödinger Operators on Trees, Phys. Rev. Lett. 106, 136804 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.136804
K. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University Press, Cambridge, UK, 1999), Chap. 12.
F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80, 1355 (2008). RMPHAT 0034-6861 10.1103/RevModPhys.80.1355
T. Thiery, F. Huveneers, M. Müller, and W. De Roeck, Many-Body Delocalization as a Quantum Avalanche, Phys. Rev. Lett. 121, 140601 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.121.140601
T. Thiery, M. Müller, and W. De Roeck, A microscopically motivated renormalization scheme for the MBL/ETH transition, arXiv:1711.09880.
P. T. Dumitrescu, A. Goremykina, S. A. Parameswaran, M. Serbyn, and R. Vasseur, Kosterlitz-Thouless scaling at many-body localization phase transitions, Phys. Rev. B 99, 094205 (2019). 2469-9950 10.1103/PhysRevB.99.094205
C.-P. Zhu and S.-J. Xiong, Localization-delocalization transition of electron states in a disordered quantum small-world network, Phys. Rev. B 62, 14780 (2000). PRBMDO 0163-1829 10.1103/PhysRevB.62.14780
C.-P. Zhu and S.-J. Xiong, Fractal analysis of wave functions at the localization-delocalization transition in a disordered quantum small-world-network model, Phys. Rev. B 63, 193405 (2001). PRBMDO 0163-1829 10.1103/PhysRevB.63.193405
O. Giraud, B. Georgeot, and D. L. Shepelyansky, Quantum computing of delocalization in small-world networks, Phys. Rev. E 72, 036203 (2005). PLEEE8 1539-3755 10.1103/PhysRevE.72.036203
D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature (London) 393, 440 (1998). NATUAS 0028-0836 10.1038/30918
M. Bollhöfer and Y. Notay, Jadamilu: A software code for computing selected eigenvalues of large sparse symmetric matrices, Comput. Phys. Commun. 177, 951 (2007). CPHCBZ 0010-4655 10.1016/j.cpc.2007.08.004
O. Schenk, M. Bollhöfer, and R. A. Römer, On large-scale diagonalization techniques for the Anderson model of localization, SIAM Rev. 50, 91 (2008). SIREAD 0036-1445 10.1137/070707002
F. Morone, G. Parisi, and F. Ricci-Tersenghi, Large deviations of correlation functions in random magnets, Phys. Rev. B 89, 214202 (2014). PRBMDO 1098-0121 10.1103/PhysRevB.89.214202
G. Perugini and F. Ricci-Tersenghi, Improved belief propagation algorithm finds many Bethe states in the random-field Ising model on random graphs, Phys. Rev. E 97, 012152 (2018). 2470-0045 10.1103/PhysRevE.97.012152
Here, (Equation presented) has been determined numerically through the exponential increase of the number (Equation presented) of sites at distance (Equation presented).
M. E. Fisher and M. N. Barber, Scaling Theory for Finite-Size Effects in the Critical Region, Phys. Rev. Lett. 28, 1516 (1972). PRLTAO 0031-9007 10.1103/PhysRevLett.28.1516
J. L. Pichard and G. Sarma, Finite size scaling approach to Anderson localisation, J. Phys. C 14, L127 (1981). JPSOAW 0022-3719 10.1088/0022-3719/14/6/003
A. MacKinnon and B. Kramer, One-Parameter Scaling of Localization Length and Conductance in Disordered systems, Phys. Rev. Lett. 47, 1546 (1981). PRLTAO 0031-9007 10.1103/PhysRevLett.47.1546
K. Slevin and T. Ohtsuki, Corrections to Scaling at the Anderson Transition, Phys. Rev. Lett. 82, 382 (1999). PRLTAO 0031-9007 10.1103/PhysRevLett.82.382
A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A. Römer, Multifractal finite-size scaling and universality at the Anderson transition, Phys. Rev. B 84, 134209 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.134209
K. S. Tikhonov and A. D. Mirlin (private communication).
V. Oganesyan and D. A. Huse, Localization of interacting fermions at high temperature, Phys. Rev. B 75, 155111 (2007). PRBMDO 1098-0121 10.1103/PhysRevB.75.155111
K. Kudo and T. Deguchi, Finite-size scaling with respect to interaction and disorder strength at the many-body localization transition, Phys. Rev. B 97, 220201 (R) (2018). 2469-9950 10.1103/PhysRevB.97.220201
Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles, Phys. Rev. Lett. 110, 084101 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.110.084101
M. Sade, T. Kalisky, S. Havlin, and R. Berkovits, Localization transition on complex networks via spectral statistics, Phys. Rev. E 72, 066123 (2005). PLEEE8 1539-3755 10.1103/PhysRevE.72.066123
I. García-Mata, J. Martin, R. Dubertrand, O. Giraud, B. Georgeot, and G. Lemarié (unpublished).
E. Tarquini, G. Biroli, and M. Tarzia, Critical properties of the Anderson localization transition and the high-dimensional limit, Phys. Rev. B 95, 094204 (2017). 2469-9950 10.1103/PhysRevB.95.094204