disorders of consciousness; functional connectivity; integration; segregation and centrality network measurements
Abstract :
[en] INTRODUCTION: Functional connectivity alterations within individual resting state networks (RSNs) are linked to disorders of consciousness (DOC). If these alterations influence the interaction quality with other RNSs, then, brain alterations in patients with DOC would be characterized by connectivity changes in the large-scale model composed of RSNs. How are functional interactions between RSNs influenced by internal alterations of individual RSNs? Do the functional alterations induced by DOC change some key properties of the large-scale network, which have been suggested to be critical for the consciousness emergence? Here, we use network analysis to measure functional connectivity in patients with DOC and address these questions. We hypothesized that network properties provide descriptions of brain functional reconfiguration associated with consciousness alterations. METHODS: We apply nodal and global network measurements to study the reconfiguration linked with the disease severity. We study changes in integration, segregation, and centrality properties of the functional connectivity between the RSNs in subjects with different levels of consciousness. RESULTS: Our analysis indicates that nodal measurements are more sensitive to disease severity than global measurements, particularly, for functional connectivity of sensory and cognitively related RSNs. CONCLUSION: The network property alterations of functional connectivity in different consciousness levels suggest a whole-brain topological reorganization of the large-scale functional connectivity in patients with DOC.
Disciplines :
Neurosciences & behavior
Author, co-author :
Martinez, Darwin E.
Rudas, Jorge
Demertzi, Athina ; Université de Liège - ULiège > Consciousness-Physiology of Cognition
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Beckmann, C., De Luca, M., Devlin, J., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transaction of the Royal Society B: Biological Science, 360(1457), 1001–1013. https://doi.org/10.1098/rstb.2005.1634
Biswal, B. (2012). Resting state fMRI: A personal history. NeuroImage, 62, 938–944. https://doi.org/10.1016/j.neuroimage.2012.01.090
Boly, M., Phillips, C., Tshibanda, L., Vanhaudenhuyse, A., Schabus, M., Dang-Vu, T. T., … Laureys, S. (2008). Intrinsic brain activity in altered states of consciousness: How conscious is the default mode of brain function? Annals of the New York Academy of Sciences, 1129, 119–129. https://doi.org/10.1196/annals.1417.015
Bruno, M.-A., Laureys, S., & Demertzi, A. (2013). Coma and disorders of consciousness. In J. L. Bernat & H. R. Beresford (Eds.), Ethical and legal issues in neurology (pp. 205–213). Edinburgh, UK: Elsevier.
Bullmore, E. (2012). The future of functional MRI in clinical medicine. NeuroImage, 62(2), 1267–1271. https://doi.org/10.1016/j.neuroimage.2012.01.026
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186–198. https://doi.org/10.1038/nrn2575
Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13(5), 336–349. https://doi.org/10.1038/nrn3214
Cacciola, A., Naro, A., Milardi, D., Bramanti, A., Malatacca, L., Spitaleri, M., … Anastasi, G. (2019). Functional brain network topology discriminates between patients with minimally conscious state and unresponsive wakefulness syndrome. Journal of Clinical Medicine, 8(3), 306. https://doi.org/10.3390/jcm8030306
Calhoun, V., Adali, T., Pearlson, G., & Pekar, J. (2001). Group ICA of functional MRI data: Separability, stationarity, and inference. Proceedings of International Conference on ICA and BSS. San Diego, CA.
Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853. https://doi.org/10.1073/pnas.0601417103
Demertzi, A., Gómez, F., Crone, J. S., Vanhaudenhuyse, A., Tshibanda, L., Noirhomme, Q., … Soddu, A. (2014). Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations. Cortex, 52, 35–46. https://doi.org/10.1016/j.cortex.2013.11.005
Demertzi, A., Soddu, A., & Laureys, S. (2013). Consciousness supporting networks. Current Opinion in Neurobiology, 23(2), 239–244. https://doi.org/10.1016/j.conb.2012.12.003
Di Perri, C., Bahri, M. A., Amico, E., Thibaut, A., Heine, L., Antonopoulos, G., … Laureys, S. (2016). Neural correlates of consciousness in patients who have emerged from a minimally conscious state: A cross-sectional multimodal imaging study. The Lancet, Neurology, 15(8), 830–842. https://doi.org/10.1016/S1474-4422(16)00111-3
Di Perri, C., Stender, J., Laureys, S., & Gosseries, O. (2014). Functional neuroanatomy of disorders of consciousness. Epilepsy & Behavior, 30, 28–32. https://doi.org/10.1016/j.yebeh.2013.09.014
Di Perri, C., Thibaut, A., Heine, L., Soddu, A., Demertzi, A., & Laureys, S. (2014). Measuring consciousness in coma and related states. World Journal of Radiology, 6(8), 589–597. https://doi.org/10.4329/wjr.v6.i8.589
Fox, M., & Raichle, M. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700–711. https://doi.org/10.1038/nrn2201
Friston, K. (2007). Statistical parametric mapping. In K. Friston, J. Ashburner, S. Kiebel, T. Nichols & W. Penny (Eds.), Statistical parametric mapping (pp. 10–31). London, UK: Academic Press.
Giacino, J. T., Kalmar, K., & Whyte, J. (2004). The JFK coma recovery scale-revised: Measurement characteristics and diagnostic utility. Archives of Physical Medicine and Rehabilitation, 85(12), 2020–2029. https://doi.org/10.1016/j.apmr.2004.02.033
Guldenmund, P., Demertzi, A., Boveroux, P., Boly, M., Vanhaudenhuyse, A., Bruno, M.-A., … Soddu, A. (2013). Thalamus, brainstem and salience network connectivity changes during propofol-induced sedation and unconsciousness. Brain Connectivity, 3(3), 273–285. https://doi.org/10.1089/brain.2012.0117
Guldenmund, P., Vanhaudenhuyse, A., Sanders, R. D., Sleigh, J., Bruno, M. A., Demertzi, A., … Bonhomme, V. (2017). Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep. British Journal of Anaesthesia, 119(4), 674–684. https://doi.org/10.1093/bja/aex257
Hannawi, Y., Lindquist, M. A., Caffo, B. S., Sair, H. I., & Stevens, R. D. (2015). Resting brain activity in disorders of consciousness: A systematic review and meta-analysis. Neurology, 84(12), 1272–1280. https://doi.org/10.1212/WNL.0000000000001404
Heine, L., Soddu, A., Gómez, F., Vanhaudenhuyse, A., Tshibanda, L., Thonnard, M., … Demertzi, A. (2012). Resting state networks and consciousness: Alterations of multiple resting state network connectivity in physiological, pharmacological and pathological consciousness states. Frontiers in Psychology, 3, 295. https://doi.org/10.3389/fpsyg.2012.00295
Jafri, M. J., Pearlson, G. D., Stevens, M., & Calhoun, V. D. (2008). A method for functional network connectivity among spatially independent resting-state components in schizophrenia. NeuroImage, 39(4), 1666–1681. https://doi.org/10.1016/j.neuroimage.2007.11.001
Kirsch, M., Guldenmund, P., Ali Bahri, M., Demertzi, A., Baquero, K., Heine, L., … Laureys, S. (2017). Sedation of patients with disorders of consciousness during neuroimaging: Effects on resting state functional brain connectivity. Anesthesia and Analgesia, 124(2), 588–598. https://doi.org/10.1213/ANE.0000000000001721
Laureys, S., & Schiff, N. D. (2012). Coma and consciousness: Paradigms (re)framed by neuroimaging. NeuroImage, 61(2), 478–491. https://doi.org/10.1016/j.neuroimage.2011.12.041
Lohmann, G., Margulies, D. S., Horstmann, A., Pleger, B., Lepsien, J., Goldhahn, D., … Turner, R. (2010). Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS One, 5(4), e10232. https://doi.org/10.1371/journal.pone.0010232
Malagurski, B., Péran, P., Sarton, B., Vinour, H., Naboulsi, E., Riu, B., … Silva, S. (2019). Topological disintegration of resting state functional connectomes in coma. NeuroImage, 195, 354–361. https://doi.org/10.1016/j.neuroimage.2019.03.012
Mazaika, P. K., Hoeft, F., Glover, G. H., & Reiss, A. L. (2009). Methods and software for fMRI analysis of clinical subjects. NeuroImage, 47, S58. https://doi.org/10.1016/S1053-8119(09)70238-1
McKeown, M. J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann, S. S., Bell, A. J., & Sejnowski, T. J. (1998). Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 6(3), 160–188.
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018
Ribeiro de Paula, D., Ziegler, E., Abeyasinghe, P. M., Das, T. K., Cavaliere, C., Aiello, M., … Soddu, A. (2017). A method for independent component graph analysis of resting-state fMRI. Brain and Behavior, 7(3), e00626. https://doi.org/10.1002/brb3.626
Rosazza, C., & Minati, L. (2011). Resting-state brain networks: Literature review and clinical applications. Neurological Sciences, 32(5), 773–785. https://doi.org/10.1007/s10072-011-0636-y
Rubinov, M., & Bullmore, E. (2013). Fledgling pathoconnectomics of psychiatric disorders. Trends in Cognitive Science, 17(12), 641–647. https://doi.org/10.1016/j.tics.2013.10.007
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
Rudas, J., Guaje, J., Demertzi, A., Heine, L., Tshibanda, L., Soddu, A., … Gómez, F. (2014). A method for functional network connectivity using distance correlation. In Proceedings of 36th Annual International Conference of the IEEE (Aug 26-30) (pp. 2793–2796). Chicago, IL: Engineering in Medicine and Biology Society (EMBC).
Schnakers, C., & Laureys, S. (2012). Coma and disorders of consciousness. London, UK: Springer-Verlag.
Schnakers, C., Majerus, S., Giacino, J., Vanhaudenhuyse, A., Bruno, M.-A., Boly, M., … Laureys, S. (2008). A French validation study of the Coma Recovery Scale-Revised (CRS-R). Brain Injury, 22(10), 786–792. https://doi.org/10.1080/02699050802403557
Sporns, O. (2003). Graph theory methods for the analysis of neural connectivity patterns. In R. Kötter (Ed.), Neuroscience databases (pp. 171–185). New York, NY: Springer.
Sporns, O. (2013). Structure and function of complex brain networks. Dialogues in Clinical Neuroscience, 15(3), 247–262.
Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. The Annals of Statistics, 35(6), 2769–2794. https://doi.org/10.1214/009053607000000505
Tononi, G., & Koch, C. (2008). The neural correlates of consciousness. Annals of the New York Academy of Science, 1124(1), 239–261. https://doi.org/10.1196/annals.1440.004
Tononi, G., & Koch, C. (2015). Consciousness: Here, there and everywhere? Philosophical Transactions of the Royal Society B: Biological Science, 370(1668), 20140167. https://doi.org/10.1098/rstb.2014.0167
Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proceedings of National Academy of Sciences of the United States of America, 91(11), 5033–5037. https://doi.org/10.1073/pnas.91.11.5033
van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534. https://doi.org/10.1016/j.euroneuro.2010.03.008
Welch, B. L. (1947). The generalisation of student's problems when several different population variances are involved. Biometrika, 34(1–2), 28–35.
Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: Identifying differences in brain networks. NeuroImage, 53(4), 1197–1207. https://doi.org/10.1016/j.neuroimage.2010.06.041
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.