[en] The Jovian Auroral Distributions Experiment aboard Juno observed accelerated proton populations connected to Io's footprint tail aurora. While accelerated electron populations have been previously linked with Io's auroral footprint tail aurora, we present new evidence for proton acceleration due to Io's Alfvénic interaction with Jupiter's magnetosphere. Separate populations were accelerated above the Io torus and at high latitudes near Jupiter. The timing suggests the acceleration is due to Alfvén waves associated with Io's Main Alfvén Wing. The inferred high-latitude proton acceleration region spans 0.92.5 Jovian radii in altitude, comparable to the expected location for electron acceleration, and suggests the associated Alfvén waves are able to accelerate electrons and protons in similar locations. The proton populations magnetically connected to Io's orbit are recently perturbed, equilibrating with the nominal torus plasma population on a timescale smaller than Io's System III orbital period of 13 h, likely due to wave-particle interactions. The tail populations are split into a wake-like structure with distinct inner and outer regions, where the inner region maps to an equatorial width nearly identical to the diameter of Io. The approximately symmetric surrounding outer regions are each slightly smaller than the central region and may be related to Io's atmospheric extent. The nominal, corotational torus proton population exhibits energization throughout all regions, peaking at the anti-Jovian flank of the inner core region mapping to Io's diameter. These proton observations suggest Alfvén waves are capable of accelerating protons in multiple locations and provide further evidence that Io's Alfvénic interaction is bifurcated.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Szalay, J. R.
Bagenal, F.
Allegrini, F.
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Acuña, M. H., Neubauer, F. M., & Ness, N. F. (1981). Standing Alfven wave current system at Io - Voyager 1 observations. Journal of Geophysical Research, 86(A10), 8513–8521. http://doi.org/10.1029/JA086iA10p08513
Bagenal, F. (1983). Alfven wave propagation in the Io plasma torus. Journal of Geophysical Research, 88(A4), 3013–3025. https://doi.org/10.1029/JA088iA04p03013
Bagenal, F. (1997). Ionization source near Io from Galileo wake data. Geophysical Research Letters, 24(17), 2111–2114. http://doi.org/10.1029/97GL02052
Bagenal, F., Dougherty, L. P., Bodisch, K. M., Richardson, J. D., & Belcher, J. M. (2017). Survey of Voyager plasma science ions at Jupiter: 1. Analysis method. Journal of Geophysical Research: Space Physics, 122, 8241–8256. https://doi.org/10.1002/2016JA023797
Belcher, J. W., Goertz, C. K., Sullivan, J. D., & Acuna, M. H. (1981). Plasma observations of the Alfven wave generated by Io. Journal of Geophysical Research, 86(A10), 8508–8512. http://doi.org/10.1029/JA086iA10p08508
Bigg, E. K. (1964). Influence of the satellite Io on Jupiter's decametric emission. Nature, 203(4949), 1008–1010. https://doi.org/10.1038/2031008a0
Bodisch, K. M., Dougherty, L. P., & Bagenal, F. (2017). Survey of Voyager plasma science ions at Jupiter: 3. Protons and minor ions. Journal of Geophysical Research: Space Physics, 122, 8277–8294. http://doi.org/10.1002/2017JA024148
Bonfond, B., Grodent, D., Gérard, J.-C., Radioti, A., Dols, V., Delamere, P. A., & Clarke, J. T. (2009). The Io UV footprint: Location, inter-spot distances and tail vertical extent. Journal of Geophysical Research, 114, A07224. https://doi.org/10.1029/2009JA014312
Bonfond, B., Grodent, D., Gérard, J.-C., Radioti, A., Saur, J., & Jacobsen, S. (2008). UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity? Geophysical Research Letters, 35, L05107. https://doi.org/10.1029/2007GL032418
Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V., Gérard, J. C., & Radioti, A. (2017). The tails of the satellite auroral footprints at Jupiter. Journal of Geophysical Research: Space Physics, 122, 7985–7996. https://doi.org/10.1002/2017JA024370
Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., McConnell, J. C., Smith, G. R., Holberg, J. B., Atreya, S. K., Donahue, T. M., Strobel, D. F., & Bertaux, J. L. (1981). Overview of the Voyager ultraviolet spectrometry results through Jupiter encounter. Journal of Geophysical Research, 86(A10), 8259–8284. https://doi.org/10.1029/JA086iA10p08259
Clarke, J. T., Ballester, G. E., Trauger, J., Evans, R., Connerney, J. E. P., Stapelfeldt, K., Crisp, D., Feldman, P. D., Burrows, C. J., Casertano, S., Gallagher, J. S., Griffiths, R. E., Hester, J. J., Hoessel, J. G., Holtzman, J. A., Krist, J. E., Meadows, V., Mould, J. R., Scowen, P. A., Watson, A. M., & Westphal, J. A. (1996). Far-ultraviolet imaging of Jupiter's aurora and the Io “footprint'”. Science, 274(5286), 404–409. https://doi.org/10.1126/science.274.5286.404
Coates, A. J., Crary, F. J., Young, D. T., Szego, K., Arridge, C. S., Bebesi, Z., Sittler, E. C. Jr., Hartle, R. E., & Hill, T. W. (2007). Ionospheric electrons in Titan's tail: Plasma structure during the Cassini T9 encounter. Geophysical Research Letters, 34, L24S05. http://doi.org/10.1029/2007GL030919
Coates, A. J., Wellbrock, A., Lewis, G. R., Arridge, C. S., Crary, F. J., Young, D. T., Thomsen, M. F., Reisenfeld, D. B., Sittler, E. C. Jr., Johnson, R. E., Szego, K., Bebesi, Z., & Jones, G. H. (2012). Cassini in Titan's tail: CAPS observations of plasma escape. Journal of Geophysical Research, 117, A05324. http://doi.org/10.1029/2012JA017595
Connerney, J. E. P., Açuna, M. H., & Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. Journal of Geophysical Research, 86, 8370–8384.
Connerney, J. E. P., Baron, R., Satoh, T., & Owen, T. (1993). Images of Excited H3 + at the foot of the lo flux tube in Jupiter's atmosphere. Science, 262(5136), 1035–1038. https://doi.org/10.1126/science.262.5136.1035
Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., Jorgensen, P. S., Lawton, P., Malinnikova, A., Merayo, J. M., Murphy, S., Odom, J., Oliversen, R., Schnurr, R., Sheppard, D., & Smith, E. J. (2017). The Juno magnetic field investigation. Space Science Reviews, 213(1-4), 39–138. https://doi.org/10.1007/s11214-017-0334-z
Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., Merayo, J. M. G., Herceg, M., Bloxham, J., Moore, K. M., Bolton, S. J., & Levin, S. M. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophysical Research Letters, 45, 2590–2596. https://doi.org/10.1002/2018GL077312
Connerney, J. E. P., & Satoh, T. (2000). The H3+ ion: A remote diagnostic of the Jovian magnetosphere. Philosophical Transactions of the Royal Society of London - A, 358, 2471–2483.
Crary, F. J. (1997). On the generation of an electron beam by Io. Journal of Geophysical Research, 102(A), 37–50. https://doi.org/10.1029/96JA02409
Crary, F. J., & Bagenal, F. (1997). Coupling the plasma interaction at Io to Jupiter. Geophysical Research Letters, 24(17), 2135–2138. http://doi.org/10.1029/97GL02248
Crary, F. J., Bagenal, F., Ansher, J. A., Gurnett, D. A., & Kurth, W. S. (1996). Anisotropy and proton density in the Io plasma torus derived from whistler wave dispersion. Journal of Geophysical Research, 101(A), 2699–2706. http://doi.org/10.1029/95JA02212
Damiano, P. A., Delamere, P. A., Stauffer, B., Ng, C.-S., & Johnson, J. R. (2019). Kinetic simulations of electron acceleration by dispersive scale Alfvén waves in Jupiter's magnetosphere. Geophysical Research Letters, 46, 3043–3051. https://doi.org/10.1029/2018GL081219
Das, A. C., & Ip, W. H. (1992). Particle acceleration by kinetic Alfven waves in the Io plasma torus. Planetary and Space Science, 40(11), 1499–1502. https://doi.org/10.1016/0032-0633(92)90046-Q
Delamere, P. A., Bagenal, F., Ergun, R. E., & Su, Y. J. (2003). Momentum transfer between the Io plasma wake and Jupiter's ionosphere. Journal of Geophysical Research, 108(A), 1241. https://doi.org/10.1029/2002JA009530
Ergun, R. E., Ray, L. C., Delamere, P. A., Bagenal, F., Dols, V., & Su, Y. J. (2009). Generation of parallel electric fields in the Jupiter-Io torus wake region. Journal of Geophysical Research, 114, A05201. https://doi.org/10.1029/2008JA013968
Frank, L. A., Paterson, W. R., Ackerson, K. L., Vasyliunas, V. M., Coroniti, F. V., & Bolton, S. J. (1996). Plasma observations at Io with the Galileo spacecraft. Science, 274(5286), 394–395. https://doi.org/10.1126/science.274.5286.394
Gershman, D. J., Connerney, J. E. P., Kotsiaros, S., DiBraccio, G. A., Martos, Y. M., Viñas, A. F., Hue, V., Clark, G., Bagenal, F., Levin, S., & Bolton, S. J. (2019). Alfvénic fluctuations associated with Jupiter's auroral emissions. Geophysical Research Letters, 46, 7157–7165. https://doi.org/10.1029/2019GL082951
Gurnett, D. A., & Goertz, C. K. (1981). Multiple Alfven wave reflections excited by Io Origin of the Jovian decametric arcs. Journal of Geophysical Research, 86(A2), 717–722. https://doi.org/10.1029/JA086iA02p00717
Hess, S. L. G., Delamere, P., Dols, V., Bonfond, B., & SwIFPT, D. (2010). Power transmission and particle acceleration along the Io flux tube. Journal of Geophysical Research, 115, A06205. https://doi.org/10.1029/2009JA014928
Hess, S. L. G., Zarka, P., Mottez, F., & Ryabov, V. B. (2009). Electric potential jumps in the Io-Jupiter flux tube. Planetary and Space Science, 57(1), 23–33. http://doi.org/10.1016/j.pss.2008.10.006
Hinton, P. C., Bagenal, F., & Bonfond, B. (2019). Alfvén wave propagation in the Io plasma torus. Geophysical Research Letters, 46, 1242–1249. https://doi.org/10.1029/2018GL081472
Huang, T. S., & Birmingham, T. J. (1992). The polarization electric field and its effects in an anisotropic rotating magnetospheric plasma. Journal of Geophysical Research, 97(1511), 1992.
Huba, J. D. (2009). NRF Plasma Formulary (pp. 31–33). Washington, DC: Naval Research Laboratory.
Hue, V., Greathouse, T. K., Bonfond, B., Saur, J., Gladstone, G. R., Roth, L., Davis, M. W., Gérard, J. C., Grodent, D. C., Kammer, J. A., & Szalay, J. R. (2019). Juno-UVS observation of the Io footprint during solar eclipse. Journal of Geophysical Research: Space Physics, 124, 5184–5199. https://doi.org/10.1029/2018JA026431
Jacobsen, S., Neubauer, F. M., Saur, J., & Schilling, N. (2007). Io's nonlinear MHD-wave field in the heterogeneous Jovian magnetosphere. Geophysical Research Letters, 34, L10202. https://doi.org/10.1029/2006GL029187
Jacobsen, S., Saur, J., Neubauer, F. M., Bonfond, B., Gérard, J. C., & Grodent, D. (2010). Location and spatial shape of electron beams in Io's wake. Journal of Geophysical Research, 115, A04205. https://doi.org/10.1029/2009JA014753
Jessup, K. L., Spencer, J. R., Ballester, G. E., Howell, R. R., Roesler, F., Vigel, M., & Yelle, R. (2004). The atmospheric signature of Io's Prometheus plume and anti-Jovian hemisphere: Evidence for a sublimation atmosphere. Icarus, 169(1), 197–215.
Jones, S. T., & Su, Y. J. (2008). Role of dispersive Alfvén waves in generating parallel electric fields along the Io-Jupiter fluxtube. Journal of Geophysical Research, 113. https://doi.org/10.1029/2008JA013512
Matsuda, K., Terada, N., Katoh, Y., & Misawa, H. (2012). A simulation study of the current-voltage relationship of the Io tail aurora. Journal of Geophysical Research, 117, A10214. http://doi.org/10.1029/2012JA017790
Mauk, B., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., Bolton, S. J., Levin, S. M., Adriani, A., Allegrini, F., Bagenal, F., Bonfond, B., Connerney, J. E. P., Gladstone, G. R., Kurth, W. S., McComas, D., & Valek, P. (2017). Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature, 549(7670), 66–69. https://doi.org/10.1038/nature23648
McComas, D. J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Clark, G., Crary, F., Desai, M. I., de Los Santos, A., Demkee, D., Dickinson, J., Everett, D., Finley, T., Gribanova, A., Hill, R., Johnson, J., Kofoed, C., Loeffler, C., Louarn, P., Maple, M., Mills, W., Pollock, C., Reno, M., Rodriguez, B., Rouzaud, J., Santos-Costa, D., Valek, P., Weidner, S., Wilson, P., Wilson, R. J., & White, D. (2017). The Jovian auroral distributions experiment (JADE) on the Juno mission to Jupiter. Space Science Reviews, Online first, 213(1-4), 547–643. https://doi.org/10.1007/s11214-013-9990-9
Mura, A., Adriani, A., Connerney, J. E. P., Bolton, S., Altieri, F., Bagenal, F., Bonfond, B., Dinelli, B. M., Gérard, J. C., Greathouse, T., Grodent, D., Levin, S., Mauk, B., Moriconi, M. L., Saur, J., Waite, J. H. Jr., Amoroso, M., Cicchetti, A., Fabiano, F., Filacchione, G., Grassi, D., Migliorini, A., Noschese, R., Olivieri, A., Piccioni, G., Plainaki, C., Sindoni, G., Sordini, R., Tosi, F., & Turrini, D. (2018). Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 361(6404), 774–777. http://doi.org/10.1126/science.aat1450
Nerney, E. G., Bagenal, F., & Steffl, A. J. (2017). Io plasma torus ion composition: Voyager, Galileo, and Cassini. Journal of Geophysical Research: Space Physics, 122, 727–744. https://doi.org/10.1002/2016JA023306
Ness, N. F., Acuña, M. H., Lepping, R. P., Burlaga, L. F., Behannon, K. W., & Neubaur, F. M. (1979). Magnetic field studies at Jupiter by Voyager 1: Preliminary results. Science, 204(4396), 982–987. https://doi.org/10.1126/science.204.4396.982
Neubauer, F. M. (1980). Nonlinear standing Alfven wave current system at Io—Theory. Journal of Geophysical Research, 85(A3), 1171–1178. http://doi.org/10.1029/JA085iA03p01171
Saur, J. (2004). A model of Io's local electric field for a combined Alfvénic and unipolar inductor far-field coupling. Journal of Geophysical Research, 109, A01210. https://doi.org/10.1029/2002JA009354
Saur, J., Grambusch, T., Duling, S., Neubauer, F. M., & Simon, S. (2013). Energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astronomy and Astrophysics, 552, A119. https://doi.org/10.1051/0004-6361/201118179
Saur, J., Janser, S., Schreiner, A., Clark, G., Mauk, B. H., Kollmann, P., Ebert, R. W., Allegrini, F., Szalay, J. R., & Kotsiaros, S. (2018). Wave-particle interaction of Alfvén waves in Jupiter's magnetosphere: Auroral and magnetospheric particle acceleration. Journal of Geophysical Research: Space Physics, 123, 9560–9573. https://doi.org/10.1029/2018JA025948
Su, Y.-J., Ergun, R. E., Bagenal, F., & Delamere, P. A. (2003). Io-related Jovian auroral arcs: Modeling parallel electric fields. Journal of Geophysical Research, 108(A), 1094. https://doi.org/10.1029/2002JA009247
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., Connerney, J. E. P., Dougherty, L. P., Ebert, R. W., Gershman, D. J., Kurth, W. S., Levin, S., Louarn, P., Mauk, B., McComas, D. J., Paranicas, C., Ranquist, D., Reno, M., Thomsen, M. F., Valek, P. W., Weidner, S., & Wilson, R. J. (2017). Plasma measurements in the Jovian polar region with Juno/JADE. Geophysical Research Letters, 44, 7122–7130. http://doi.org/10.1002/2017GL072837
Szalay, J. R., Bonfond, B., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., Connerney, J. E. P., Ebert, R. W., Ergun, R. E., Gladstone, G. R., Grodent, D., Hospodarsky, G. B., Hue, V., Kurth, W. S., Kotsiaros, S., Levin, S. M., Louarn, P., Mauk, B., McComas, D. J., Saur, J., Valek, P. W., & Wilson, R. J. (2018). In situ observations connected to the Io footprint tail aurora. Journal of Geophysical Research: Planets, 123, 3061–3077. https://doi.org/10.1029/2018JE005752
Tsang, C. C. C., Spencer, J. R., & Jessup, K. L. (2015). Non-detection of post-eclipse changes in Io's Jupiter-facing atmosphere: Evidence for volcanic support? Icarus, 248, 243–253. https://doi.org/10.1016/j.icarus.2014.10.033
Tsuchiya, F., Kagitani, M., Yoshioka, K., Kimura, T., Murakami, G., Yamazaki, A., Nozawa, H., Kasaba, Y., Sakanoi, T., Uemizu, K., & Yoshikawa, I. (2015). Local electron heating in the Io plasma torus associated with Io from HISAKI satellite observation. Journal of Geophysical Research: Space Physics, 120, 10,317–10,333. http://doi.org/10.1002/2015JA021420