Analysis of the Topographic Roughness of the Moon Using the Wavelet Leaders Method and the Lunar Digital Elevation Model From the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera
[en] The Wavelet Leaders Method (WLM) is a wavelet‐based multifractal formalism that allows the
identification of scale breaks (thus scaling regimes), the definition of scaling properties (mono versus
multi fractality of the surface), and the calculation of the Hölder exponent that characterizes each pixel,
based on the comparison between a theoretical wavelet and topographic values. Here we use the WLM and
the SLDEM2015 digital elevation model to provide a near‐global and a local isotropic characterization
of the lunar roughness. The near‐global study of baselines between 330 m and 1,350 km reveals scale breaks
at ~1.3, 42.2, and 337.6 km. Scaling properties and Hölder exponent values were calculated for the three
corresponding scaling regimes: 330–659 m, 1.3–21.1 km, and 42.2–168.8 km. We find that the dichotomy
between the highlands and the maria is present at all scales. Between 330 and 659 m, the Hölder
exponent map shows the unique signature of Orientale basin, rilles, and a correlation with the age of
mare units. Between 1.3 and 21.1 km, it shows the unique signature of the Orientale basin and a
relationship with the density of 5‐ to 20‐km‐diameter craters. Scaling properties and Hölder exponent
values were also calculated locally for complex craters, basins, rilles and light plains, for two scaling
regimes: 165–659 m and 1.3–21.1 km. Relationships between the Hölder exponent values at 165–659 m,
the density of <500‐m‐diameter craters and different geologic units were found and a potential scale
break near 165 m was identified.
Deliège, Adrien ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Language :
English
Title :
Analysis of the Topographic Roughness of the Moon Using the Wavelet Leaders Method and the Lunar Digital Elevation Model From the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Araki, H., Tazawa, S., Noda, H., Ishihara, Y., Goossens, S., Sasaki, S., Kawano, N., Kamiya, I., Otake, H., Oberst, J., & Shum, C. (2009). Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science, 323(5916), 897–900. https://doi.org/10.1126/science.1164146
Araki, H., Tazawa, S., Noda, H., Tsubokawa, T., Kawano, N., & Sasaki, S. (2008). Observation of the lunar topography by the laser altimeter LALT on board Japanese lunar explorer SELENE. Advances in Space Research, 42(2), 317–322. https://doi.org/10.1016/j.asr.2007.05.042
Barker, M. K., Mazarico, E., Neumann, G. A., Zuber, M. T., Haruyama, J., & Smith, D. E. (2016). A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus, 273, 346–355. https://doi.org/10.1016/j.icarus.2015.07.039
Cao, W., Cai, Z., & Tang, Z. (2015a). Fractal structure of lunar topography: An interpretation of topographic characteristics. Geomorphology, 238, 112–118. https://doi.org/10.1016/j.geomorph.2015.03.002
Cao, W., Cai, Z., & Tang, Z. (2015b). Lunar surface roughness based on multiscale morphological method. Planetary and Space Science, 108, 13–23. https://doi.org/10.1016/j.pss.2014.09.009
Chao, E. C. T., Soderblom, L. A., Boyce, J. M., Wilhelm, D. E., & Hodges, C. A. (1973). Lunar light plains deposits (Cayley Formation) A reinterpretation of origin. Lunar Science, IV, 127–128.
Daniels, F. B. (1963). Radar determination of the root mean square slope of the lunar surface. Journal of Geophysical Research, 68, 449–453. https://doi.org/10.1029/jz068i002p00449
Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia, PA: SIAM.
Deliège, A., Kleyntssens, T., & Nicolay, S. (2017). Mars topography investigated through the Wavelet Leaders Method: A multidimensional study of its fractal structure. Planetary and Space Science, 136, 46–58. https://doi.org/10.1016/j.pss.2016.12.008
Eggleton R. E., & Schaber G. G. (1972), Cayley formation interpreted as basin ejecta, NASA Apollo 16 Preliminary Science Report (NASA SP 315), 29-7-29-16.
Fortezzo, C. M. (2013). Lunar 5M geologic map renovation. Lunar and Planetary Cartographic Catalog: Astropedia. https://astrogeology.usgs.gov/search/map/Moon/Geology/Lunar_Geologic_GIS_Renovation_March2013
Guo, D., Liu, J., Head, J. W., & Kreslavsky, M. A. (2018). Lunar Orientale impact basin secondary craters: Spatial distribution, size-frequency distribution, and estimation of fragment size. Journal of Geophysical Research, Planets, 123, 1344–1367. https://doi.org/10.1029/2017je005446
Haruyama, J., Ohtake, M., Matsunaga, T., Otake, H., Ishihara, Y., Masuda, K., Yokota, Y., & Yamamoto, S. (2014). Data products of SELENE (Kaguya) Terrain Camera for future lunar missions, 45th Lunar and Planetary Science Conference, abstract #1304.
Head, J., Fassett, C. I., Kadish, S. J., Smith, D. E., Zuber, M. T., Neumann, G. A., & ad Mazarico, E. (2010). Global distribution of large lunar craters: Implications for resurfacing and impactor populations. Science, 329, 1504–1507. https://doi.org/10.1126/science.1195050
Hiesinger, H., Head, J. W. III, Wolf, U., Jaumann, R., & Neukum, G. (2011). Ages and stratigraphy of lunar mare basalts: A synthesis. Geological Society of America Special Papers, 477, 1–51. https://doi.org/10.1130/2011.2477(01)
Howard, K. A., Wilhelms, D. E., & Scott, D. H. (1974). Lunar basin formation and highland stratigraphy. Reviews Geophysics Space Physics, 12(3), 309–327. https://doi.org/10.1029/rg012i003p00309
Jaffard, S. (2004). Wavelet techniques in multifractal analysis. Proceedings of Symposia in Pure Mathematics, 72, 91–152. https://doi.org/10.1090/pspum/072.2/2112122
Jaffard, S., & Nicolay, S. (2009). Pointwise smoothness of space-filling functions. Applied and Computational Harmonic Analysis, 26, 181–199. https://doi.org/10.1016/j.acha.2008.04.002
Kreslavsky, M. A. (2010). New observational evidence of strong seismic effects of basin-forming impacts on the Moon, European Planetary Science Congress, Abstract # EPSC2010-357.
Kreslavsky, M. A., & Head, J. W. (2012). New observational evidence of global seismic effects of basin-forming impacts on the Moon from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter data. Journal of Geophysical Research, 117, E00H24. https://doi.org/10.1029/2011je003975
Kreslavsky, M. A., Head, J. W., Neumann, G. A., Rosenburg, M. A., Aharonson, O., Smith, D. E., & Zuber, M. T. (2013). Lunar topographic roughness maps from the Lunar Orbiter Laser Altimeter (LOLA) data: Scale dependence and correlation with geologic features and units. Icarus, 226, 52–66. https://doi.org/10.1016/j.icarus.2013.04.027
Krim, J., & Indekeu, J. O. (1993). Roughness exponents: A paradox resolved. Physical Review E, 48(2), 1576–1578. https://doi.org/10.1103/physreve.48.1576
Lemelin, M. (2019). “Replication data for: Analysis of the topographic roughness of the Moon using the Wavelet Leaders Method and the Lunar Digital Elevation Model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera”, https://doi.org/10.5683/SP2/FDCKPP, Scholars Portal Dataverse, V1, UNF:6:RrMdULiG/3qQlEMIVVYFow== [fileUNF]
Mazarico, E., Lemoine, F. G., Goossens, S. J., Sabaka, T. J., Nicholas, J. B., Rowlands, D. D., Neumann, G. A., Torrence, M. H., Smith, D. E., & Zuber, M. T. (2013). Improved precision orbit determination of Lunar Orbiters from the GRAIL-derived lunar gravity models. In 23rd AAS/AIAA Space Flight Mechanics Meeting, 13–274, (pp. 1125–1142).
Melosh, H. J. (1989). Impact cratering, A geologic process, Oxford Monographs on Geology and Geophysics Series no. 11. ix + 245 pp. Oxford: Clarendon Press.
Meyer, H. M., Robinson, M. S., Denevi, B. W., & Boyd, A. K. (2018). A new global map of light plains from the Lunar Reconnaissance Orbiter Camera. In 49th Lunar and Planetary Science Conference, abstract #1474.
Moore, H. J., & Tyler, G. L. (1973). Comparison between photogrammetric and bi-static-radar slope-frequency distributions, Apollo 17: Preliminary science report, NASA SP-330 (pp. 33–17).
Nelson, D. M., Koeber, S. D., Daud, K., Robinson, M. S., Watters, T. R., Banks, M. E., & Williams, N. R. (2014). Mapping lunar maria extents and lobate scarps using LROC image products. In 45th Lunar and Planetary Science Conference, abstract #2861.
Parisi, G., & Frisch, U. (1985). On the singularity structure of fully developed turbulence. In Proceedings of the International Summer School in Physics Enrico Fermi (pp. 84–87).
Povilaitis, R. Z., Robinson, M. S., van der Bogert, C. H., Hiesinger, H., Meyer, H. M., & Ostrach, L. R. (2018). Crater density differences: Exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the moon. Planetary and Space Science, 162, 41–51. https://doi.org/10.1016/j.pss.2017.05.006
Rosenburg, M., Aharonson, O., Head, J. W., Kreslavsky, M. A., Mazarico, E., Neumann, G. A., Smith, D. E., Torrence, M. H., & Zuber, M. T. (2011). Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter. Journal of Geophysical Research, 116(E02001), 1–11. https://doi.org/10.1029/2010je003716
Smith, D. E., Zuber, M. T., Jackson, G. B., Cavanaugh, J. F., Neumann, G. A., Riris, H., Sun, X., Zellar, R. S., Coltharp, C., Connelly, J., Katz, R. B., Kleyner, I., Liiva, P., Matuszeski, A., Mazarico, E., McGarry, J. F., Novo-Gradac, A.-M., Ott, M. N., Peters, C., Ramos-Izquierdo, A., Ramsey, L., Rowlands, D. D., Schmidt, S., Scott, V. S. III, Shaw, G. B., Smith, J. C., Swinski, J.-P., Torrence, M. H., Unger, G., Yu, A. W., & Zagwoddzi, T. W. (2010). The Lunar Orbiter Laser Altimeter investigation on the Lunar Reconnaissance Orbiter Mission. Space Science Reviews, 150(1-4), 209–241. https://doi.org/10.1007/978-1-4419-6391-8_10
Smith, D. E., Zuber, M. T., Neumann, G. A., Lemoine, F. G., Mazarico, E., Torrence, M. H., Mcgarry, J. F., Rowlands, D. D., Head, J. H. III, Duxbury, T. H., Aharonson, O., Lucey, P. G., Robinson, M. S., Barnouin, O. S., Cavanaugh, J. F., Sun, X., Liiva, P., Mao, D., Smith, J. C., & Bartels, A. E. (2010). Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophysical Research Letterrs, 37(18), L18204. https://doi.org/10.1029/2010gl043751
Smith, D. E., et al. (2017). Summary of the results from the Lunar Orbiter Laser Altimeter after seven years in lunar orbit. Icarus, 283, 70–91. https://doi.org/10.1016/j.icarus.2016.06.006
Wendt, H., Roux, S., Jaffard, S., & Abry, P. (2009). Wavelet leaders and bootstrap formultifractal analysis of images. Signal Processing, 6(89), 1100–1114. https://doi.org/10.1016/j.sigpro.2008.12.015
Went, H., & Abry, P. (2007). Multifractality tests using bootstrapped wavelet leaders. IEEE Transactions on Signal Processing, 55(10), 4811–4820. https://doi.org/10.1109/tsp.2007.896269
Yokota, Y., Gwinner, K., Oberst, J., Haruyama, J., Matsunaga, T., Morota, T., Noda, H., Araki, H., Ohtake, M., Yamamoto, S., Gläser, P., Ishihara, Y., Honda, C., Hirata, N., & Demura, H. (2014). Variations of the lunar highland surface roughness at baseline 0.15-100 km and the relationship to relative age. Geophysical Research Letters, 41, 1444–1451. https://doi.org/10.1002/2013gl059091
Zanetti, M., Stadermann, A., Jolliff, B., Hiesinger, H., van der Bogert, C. H., & Plescia, J. (2017). Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon. Icarus, 298, 64–77. https://doi.org/10.1016/j.icarus.2017.01.030
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.