Article (Scientific journals)
Localizing epileptogenic regions using high-frequency oscillations and machine learning.
Weiss, Shennan A.; Waldman, Zachary; Raimondo, Federico et al.
2019In Biomarkers in Medicine, 13 (5), p. 409-418
Peer Reviewed verified by ORBi
 

Files


Full Text
Weiss et al. - 2019 - Localizing epileptogenic regions using high-freque.pdf
Publisher postprint (1.7 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
HFO; artificial intelligence; epilepsy; epilepsy surgery; epileptiform spike; fast ripple; high-frequency oscillation; machine learning; phase-amplitude coupling; ripple; seizure; wavelet
Abstract :
[en] Pathological high frequency oscillations (HFOs) are putative neurophysiological biomarkers of epileptogenic brain tissue. Utilizing HFOs for epilepsy surgery planning offers the promise of improved seizure outcomes for patients with medically refractory epilepsy. This review discusses possible machine learning strategies that can be applied to HFO biomarkers to better identify epileptogenic regions. We discuss the role of HFO rate, and utilizing features such as explicit HFO properties (spectral content, duration, and power) and phase-amplitude coupling for distinguishing pathological HFO (pHFO) events from physiological HFO events. In addition, the review highlights the importance of neuroanatomical localization in machine learning strategies.
Disciplines :
Neurology
Author, co-author :
Weiss, Shennan A.
Waldman, Zachary
Raimondo, Federico ;  Université de Liège - ULiège > Consciousness-Coma Science Group
Slezak, Diego
Donmez, Mustafa
Worrell, Gregory
Bragin, Anatol
Engel, Jerome
Staba, Richard
Sperling, Michael
Language :
English
Title :
Localizing epileptogenic regions using high-frequency oscillations and machine learning.
Publication date :
2019
Journal title :
Biomarkers in Medicine
ISSN :
1752-0363
eISSN :
1752-0371
Publisher :
Future Medicine, London, United Kingdom
Volume :
13
Issue :
5
Pages :
409-418
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 17 January 2020

Statistics


Number of views
62 (1 by ULiège)
Number of downloads
2 (1 by ULiège)

Scopus citations®
 
21
Scopus citations®
without self-citations
19
OpenCitations
 
14
OpenAlex citations
 
28

Bibliography


Similar publications



Contact ORBi