Fiebig M. Revival of the magnetoelectric effect. J Phys D Appl Phys. 2005;38:R123. 10.1088/0022-3727/38/8/R01
Bibes M, Barthélémy A. Multiferroics: towards a magnetoelectric memory. Nat Mater. 2008;7:425. 10.1038/nmat2189 18497843
Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. Magnetic control of ferroelectric polarization. Nature. 2003;426:55. 14603314 10.1038/nature02018
Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature. 2004;429:392. 10.1038/nature02572
Goto T, Kimura T, Lawes G, Ramirez AP, Tokura Y. Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys Rev Lett. 2004;92:257201. 10.1103/PhysRevLett.92.257201 15245056
Brown WF, Hornreich RM, Shtrikman S. Upper bound on the magnetoelectric susceptibility. Phys Rev. 1968;168:574. 10.1103/PhysRev.168.574
Cohen RE. Origin of ferroelectricity in perovskite oxides. Nature. 1992;358:136. 10.1038/358136a0
Vanderbilt D. First-principles based modelling of ferroelectrics. Curr Opin Solid State Mater Sci. 1997;2:701. 10.1016/S1359-0286(97)80013-7
Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature. 2003;422:506. 10.1038/nature01501 12673246
Junquera J, Ghosez P. First-Principles study of ferroelectric oxide epitaxial thin films and superlattices: role of the mechanical and electrical boundary conditions. J Comput Theor Nanosci. 2008;5:2071. 10.1166/jctn.2008.1101
Dawber M, Rabe KM, Scott JF. Physics of thin-film ferroelectric oxides. Rev Mod Phys. 2005;77:1083. 10.1103/RevModPhys.77.1083
Seshadri R, Hill NA. Visualizing the role of Bi 6s "lone pairs" in the off-center distortion in ferromagnetic BiMnO3. Chem Mater. 2001;13:2892. 10.1021/cm010090m
Krohns S, Lunkenheimer P. Ferroelectric polarization in multiferroics. Phys Sci Rev. 2019.
Van Aken BB, Palstra TT, Filippetti A, Spaldin NA. The origin of ferroelectricity in magnetoelectric YMnO3. Nat Mater. 2004;3:164. 14991018 10.1038/nmat1080
Fennie CJ, Rabe KM. Ferroelectric transition in YMnO3 from first principles. Phys Rev B. 2005;72:100103. 10.1103/PhysRevB.72.100103
Malashevich A, Vanderbilt D. First-principles theory of magnetically induced ferroelectricity in TbMnO3. Eur Phys J B. 2009;71:345. 10.1140/epjb/e2009-00208-2
Goldschmidt VM. Die gesetze der krystallochemie. Naturwissenschaften. 1926;14:477. 10.1007/BF01507527
Hill NA. Why are there so few magnetic ferroelectrics? J Phys Chem B. 2000;104:6694. 10.1021/jp000114x
Baettig P, Spaldin NA. Ab initio prediction of a multiferroic with large polarization and magnetization. Appl Phys Lett. 2005;86:12505. 10.1063/1.1843290
Nechache R, Harnagea C, Carignan L-P, Gautreau O, Pintilie L, Singh MP, et al. Epitaxial thin films of the multiferroic double perovskite Bi2FeCrO6 grown on (100)-oriented SrTiO3 substrates: Growth, characterization, and optimization. J Appl Phys. 2009;105:061621. 10.1063/1.3073826
Nechache R, Harnagea C, Pignolet A, Normandin F, Veres T, Carignan L-P, et al. Growth, structure, and properties of epitaxial thin films of first-principles predicted multiferroic Bi2FeCrO6. Appl Phys Lett. 2006;89:102902 10.1063/1.2346258
Bhattacharjee S, Bousquet E, Ghosez P. Engineering multiferroism in CaMnO3. Phys Rev Lett. 2009;102:117602. 19392237 10.1103/PhysRevLett.102.117602
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864. 10.1103/PhysRev.136.B864
Kohn W, Sham LJ. Self-Consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133. 10.1103/PhysRev.140.A1133
Martin RM. Electronic structure: basic theory and practical methods. Cambridge: Cambridge university press, 2004.
King-Smith RD, Vanderbilt D. Theory of polarization of crystalline solids. Phys Rev B. 1993;47:1651. 10.1103/PhysRevB.47.1651
Vanderbilt D, King-Smith RD. Electric polarization as a bulk quantity and its relation to surface charge. Phys Rev B. 1993;48:4442. 10.1103/PhysRevB.48.4442
Resta R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev Mod Phys. 1994;66:899. 10.1103/RevModPhys.66.899
Resta R. Theory of the electric polarization in crystals. Ferroelectrics. 1992;136:51. 10.1080/00150199208016065
Veithen M, Gonze X, Ghosez P. Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory. Phys Rev B. 2005;71:125107. 10.1103/PhysRevB.71.125107
Sai N, Rabe KM, Vanderbilt D. Theory of structural response to macroscopic electric fields in ferroelectric systems. Phys Rev B. 2002;66:104108. 10.1103/PhysRevB.66.104108
Souza I, Íñiguez J, Vanderbilt D. First-principles approach to insulators in finite electric fields. Phys Rev Lett. 2002;89:117602. 12225169 10.1103/PhysRevLett.89.117602
Stengel M, Spaldin NA, Vanderbilt D. Electric displacement as the fundamental variable in electronic-structure calculations. Nat Phys. 2009;5:304. 10.1038/nphys1185
Thonhauser T, Ceresoli D, Vanderbilt D, Resta R. Orbital magnetization in periodic insulators. Phys Rev Lett. 2005;95:137205. 10.1103/PhysRevLett.95.137205 16197172
Xiao D, Shi J, Niu Q. Berry phase correction to electron density of states in solids. Phys Rev Lett. 2005;95:137204. 10.1103/PhysRevLett.95.137204 16197171
Resta R. Electrical polarization and orbital magnetization: the modern theories. J Phys Condens Matter. 2010;22:123201. 10.1088/0953-8984/22/12/123201 21389484
Malashevich A, Souza I, Coh S, Vanderbilt D. Theory of orbital magnetoelectric response. New J Phys. 2010;12:53032. 10.1088/1367-2630/12/5/053032
Ceresoli D, Gerstmann U, Seitsonen AP, Mauri F. First-principles theory of orbital magnetization. Phys Rev B. 2010;81:60409. 10.1103/PhysRevB.81.060409
Anisimov VI, Zaanen J, Andersen OK. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B. 1991;44:943. 10.1103/PhysRevB.44.943
Cococcioni M, De Gironcoli S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys Rev B. 2005;71:035105. 10.1103/PhysRevB.71.035105
Morée JB, Amadon B. First-principles calculation of Coulomb interaction parameters for lanthanides: role of self-consistence and screening processes. Phys Rev B. 2018;98:205101. 10.1103/PhysRevB.98.205101
Kornev IA, Lisenkov S, Haumont R, Dkhil B, Bellaiche L. Finite-temperature properties of multiferroic BiFeO3. Phys Rev Lett. 2007;99:227602. 10.1103/PhysRevLett.99.227602 18233327
Zaanen J, Liechtenstein AI, Anisimov VI. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys Rev B. 1995;52:5467. 10.1103/PhysRevB.52.R5467
Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys Rev B. 1998;57:1505. 10.1103/PhysRevB.57.1505
Mellan TA, Cora F, Grau-Crespo R, Ismail-Beigi S. Importance of anisotropic Coulomb interaction in LaMnO3. Phys Rev B. 2015;92:085151. 10.1103/PhysRevB.92.085151
Bousquet E, Spaldin N. J dependence in the LSDA+U treatment of noncollinear magnets. Phys Rev B. 2010;82:220402.R. 10.1103/PhysRevB.82.220402
Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785. 10.1103/PhysRevB.37.785
Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys. 2003;118:8207. 10.1063/1.1564060
Bilc DI, Orlando R, Shaltaf R, Rignanese GM, Iniguez J, Ghosez P. Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys Rev B. 2008;77:165107. 10.1103/PhysRevB.77.165107
Stroppa A, Picozzi S. Hybrid functional study of proper and improper multiferroics. Phys Chem Chem Phys. 2010;12:5405. 10.1039/b927508h 20445921
Stroppa A, Marsman M, Kresse G, Picozzi S. The multiferroic phase of DyFeO3: an ab initio study. New J Phys. 2010;12:093026. 10.1088/1367-2630/12/9/093026
Hong J, Stroppa A, Iñiguez J, Picozzi S, Vanderbilt D, Iñiguez JJ, et al. Spin-phonon coupling effects in transition-metal perovskites: A DFT+U and hybrid-functional study. Phys Rev B. 2012;85:054417. 10.1103/PhysRevB.85.054417
Prikockyte A, Bilc D, Hermet P, Dubourdieu C, Ghosez P. First-principles calculations of the structural and dynamical properties of ferroelectric YMnO3. Phys Rev B. 2011;84:214301. 10.1103/PhysRevB.84.214301
Varignon J, Ghosez P. Improper ferroelectricity and multiferroism in 2H-BaMnO3. Phys Rev B. 2013;87:140403. 10.1103/PhysRevB.87.140403
Varignon J, Fontaine D, Bousquet E, Bristowe NC, Ghosez P. Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites. Nat Commun. 2015;6:1.
Sun J, Ruzsinszky A, Perdew J. Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett. 2015;115:036402. 10.1103/PhysRevLett.115.036402 26230809
Varignon Julien, Bibes Manuel, Zunger Alex. Mott gapping in 3dABO3 perovskites without Mott-Hubbard interelectronic repulsion energy U. Physical Review B. 2019;100:035119. 10.1103/PhysRevB.100.035119
Furness JW, Zhang Y, Lane C, Buda IG, Barbiellini B, Markiewicz RS, et al. An accurate first-principles treatment of doping-dependent electronic structure of high-temperature cuprate superconductors. Commun Phys. 2018;1:11. 10.1038/s42005-018-0009-4
Varignon J, Bibes M, Zunger A. Origin of band gaps in 3d perovskite oxides. Nat Commun. 2019;10:1658. 30971698 10.1038/s41467-019-09698-6
Filippetti A, Spaldin NA. Self-interaction-corrected pseudopotential scheme for magnetic and strongly-correlated systems. Phys Rev B. 2003;67:125109. 10.1103/PhysRevB.67.125109
Gellé A, Varignon J, Lepetit M-B. Accurate evaluation of magnetic coupling between atoms with numerous open shells: An ab initio method. EPL (Europhysics Lett). 2009;88:37003. 10.1209/0295-5075/88/37003
Lepetit MB. How to compute the magneto-electric tensor from ab-initio calculations? Theor Chem Acc. 2016;135:91. 10.1007/s00214-016-1844-6
Varignon J, Petit S, Gellé A, Lepetit MB. An ab initio study of magneto-electric coupling of YMnO3. J Phys Condens Matter. 2013;25:496004. 24196980 10.1088/0953-8984/25/49/496004
Bousquet E, Spaldin NA, Delaney KT. Unexpectedly large electronic contribution to linear magnetoelectricity. Phys Rev Lett. 2011;106:107202. 21469827 10.1103/PhysRevLett.106.107202
Iñiguez J. First-principles approach to lattice-mediated magnetoelectric effects. Phys Rev Lett. 2008;101:117201. 10.1103/PhysRevLett.101.117201 18851322
Wojdeł JC, Íñiguez J. Magnetoelectric response of multiferroic BiFeO3 and related materials from first-principles calculations. Phys Rev Lett. 2009;103:267205. 10.1103/PhysRevLett.103.267205 20366342
Malashevich A, Coh S, Souza I, Vanderbilt D. Full magnetoelectric response of Cr2O3 from first principles. Phys Rev B. 2012;86:094430. 10.1103/PhysRevB.86.094430
Scaramucci A, Bousquet E, Fechner M, Mostovoy M, Spaldin NA. Linear magnetoelectric effect by orbital magnetism. Phys Rev Lett. 2012;109:197203. 10.1103/PhysRevLett.109.197203 23215421
Ricci F, Bousquet E. Unveiling the room-temperature magnetoelectricity of troilite FeS. Phys Rev Lett. 2016;116:227601.
Spaldin NA, Fechner M, Bousquet E, Balatsky A, Nordstr L. Monopole-based formalism for the diagonal magnetoelectric response. Phys Rev B. 2013;88:094429. 10.1103/PhysRevB.88.094429
Thöle F, Fechner M, Spaldin NA. First-principles calculation of the bulk magnetoelectric monopole density: Berry phase and Wannier function approaches. Phys Rev B. 2016;93:195167. 10.1103/PhysRevB.93.195167
Tillack N, Yates JR, Radaelli PG. Ab initio cycloidal and chiral magnetoelectric responses in Cr2O3. Phys Rev B. 2016;94:100405.R. 10.1103/PhysRevB.94.100405
Ackermann M, Bohat L, Becker P, Lorenz T, Leo N, Fiebig M. Primary ferrotoroidicity in antiferromagnets. Phys Rev B. 2015;92:094431. 10.1103/PhysRevB.92.094431
Spaldin NA, Fiebig M, Mostovoy M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J Phys Condens Matter. 2008;20:434203. 10.1088/0953-8984/20/43/434203
Gao Y, Vanderbilt D, Xiao D. Microscopic theory of spin toroidization in periodic crystals. Phys Rev B. 2018;97:134423. 10.1103/PhysRevB.97.134423
Mostovoy M, Scaramucci A, Spaldin NA, Delaney KT. Temperature-dependent magnetoelectric effect from first principles. Phys Rev Lett. 2010;105:087202. 10.1103/PhysRevLett.105.087202 20868128
Prosandeev S, Kornev IA, Bellaiche L. Magnetoelectricity in BiFeO3 films: first-principles-based computations and phenomenology. Phys Rev B. 2011;83:020102.R. 10.1103/PhysRevB.83.020102
Rahmedov D, Wang D, Añiguez J, Bellaiche L. Magnetic cycloid of BiFeO3 from atomistic simulations. Phys Rev Lett. 2012;109:037207. 10.1103/PhysRevLett.109.037207 22861894
Zhong W, Rabe K, Vanderbilt D. Phase transitions in BaTiO3 from first principles. Phys Rev Lett. 1994;73:1861. 10.1103/PhysRevLett.73.1861 10056905
Zhong W, Rabe M, Vanderbilt D. First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. Phys Rev B. 1995;52:6301. 10.1103/PhysRevB.52.6301
Wojdeł JC, Hermet P, Ljungberg MP, Ghosez P, Íñiguez J. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J Phys Condens Matter. 2013;25:305401.
García-Fernández P, Wojdel JC, Iniguez J, Junquera J. Second-principles method for materials simulations including electron and lattice degrees of freedom. Phys Rev B. 2016;93:195137. 10.1103/PhysRevB.93.195137
Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, Li YL, et al. Room-temperature ferroelectricity in strained SrTiO3. Nature. 2004;430:758. 10.1038/nature02773 15306803
Ghosez P, Triscone JM. Multiferroics: Coupling of three lattice instabilities. Nat Mater. 2011;10:269. 10.1038/nmat3003 21430671
Rabe KM, Ahn CH, Triscone J-M. Physics of ferroelectrics, 2007.
Glazer AM. The classification of tilted octahedra in perovskites. Acta crystallogr sect B struct crystallogr cryst chem. 1972;28:3384. 10.1107/S0567740872007976
Bousquet E, Spaldin N. Induced magnetoelectric response in pnma perovskites. Phys Rev Lett. 2011;107:197603. 22181646 10.1103/PhysRevLett.107.197603
Günter T, Bousquet E, David A, Boullay P, Ghosez P, Prellier W, et al. Incipient ferroelectricity in 2.3% tensile-strained CaMnO3 films. Phys Rev B. 2012;85:214120. 10.1103/PhysRevB.85.214120
Bousquet E, Cano A. Non-collinear magnetism in multiferroic perovskites. J Phys Condens Matter. 2016;28:123001. 26912212 10.1088/0953-8984/28/12/123001
Bellaiche L, Gui Z, Kornev IA. A simple law governing coupled magnetic orders in perovskites. J Phys Condens Matter. 2012;24:312201. 10.1088/0953-8984/24/31/312201 22776811
Senn MS, Bristowe NC. A group-theoretical approach to enumerating magnetoelectric and multiferroic couplings in perovskites. Acta Crystallogr Sect A Found Adv. 2018;74:308. 10.1107/S2053273318007441
Béa H, Dupé B, Fusil S, Mattana R, Jacquet E, Warot-Fonrose B, et al. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys Rev Lett. 2009;102:217603. 10.1103/PhysRevLett.102.217603
Diéguez O, González-Vázquez OE, Wojdeł JC, Íñiguez J. First-principles predictions of low-energy phases of multiferroic BiFeO3. Phys Rev B. 2011;83:094105. 10.1103/PhysRevB.83.094105
Yang Y, Ren W, Stengel M, Yan XH, Bellaiche L. Revisiting properties of ferroelectric and multiferroic thin films under tensile strain from first principles. Phys Rev Lett. 2012;109:057602. 10.1103/PhysRevLett.109.057602 23006208
Yang Y, Íñiguez J, Mao AJ, Bellaiche L. Prediction of a novel magnetoelectric switching mechanism in multiferroics. Phys Rev Lett. 2014;112:057202. 10.1103/PhysRevLett.112.057202 24580626
Varignon J, Bristowe NC, Ghosez P. Electric field control of Jahn-Teller distortions in bulk perovskites. phys Rev Lett. 2016;116:057602. 26894734 10.1103/PhysRevLett.116.057602
Song G, Zhang W. First-principles study on the phase diagram and multiferroic properties of (SrCoO3)1/(SrTiO3)1 superlattices. Sci Rep. 2014;4:04564.
Aguado-Puente P, García-Fernández P, Junquera J. Interplay of couplings between antiferrodistortive, ferroelectric, and strain degrees of freedom in monodomain PbTiO3/SrTiO3 superlattices. Phys Rev Lett. 2011;107:217601. 22181925 10.1103/PhysRevLett.107.217601
Bousquet E, Spaldin NA, Ghosez P. Strain-Induced ferroelectricity in simple rocksalt binary oxides. Phys Rev Lett. 2010;104:037601. 10.1103/PhysRevLett.104.037601 20366683
Garcia-Castro AC, Spaldin NA, Romero AH, Bousquet E. Geometric ferroelectricity in fluoroperovskites. Phys Rev B. 2014;89:104107. 10.1103/PhysRevB.89.104107
Garcia-Castro AC, Romero AH, Bousquet E. Strain-engineered multiferroicity in pnma NaMnF3fluoroperovskite. Phys Rev Lett. 2016;116:117202. 10.1103/PhysRevLett.116.117202
Aschauer U, Pfenninger R, Selbach SM, Grande T, Spaldin NA. Strain-controlled oxygen vacancy formation and ordering in CaMnO3. Phys Rev B. 2013;88:054111. 10.1103/PhysRevB.88.054111
Chandrasena RU, Yang W, Lei Q, Delgado-Jaime MU, Wijesekara KD, Golalikhani M, et al. Strain-engineered oxygen vacancies in CaMnO3 thin films. Nano Lett. 2017;17:794. 10.1021/acs.nanolett.6b03986 28103040
Copie O, Varignon J, Rotella H, Steciuk G, Boullay P, Pautrat A, et al. Chemical strain engineering of magnetism in oxide thin films. Adv Mater. 2017;29:1604112. 10.1002/adma.201604112
Kalinin SV, Spaldin NA. Functional ion defects in transition. Science. 2014;341:858
Xu T, Shimada T, Araki Y, Wang J, Kitamura T. Defect-strain engineering for multiferroic and magnetoelectric properties in epitaxial (110) ferroelectric lead titanate. Phys Rev B. 2015;92:104106. 10.1103/PhysRevB.92.104106
Wojdeł JC, Íñiguez J. Ab initio indications for giant magnetoelectric effects driven by structural softness. Phys Rev Lett. 2010;105:037208. 10.1103/PhysRevLett.105.037208 20867804
Baltensperger W. Influence of magnetic order on conduction electrons and phonons in magnetic semiconductors. J Appl Phys. 1970;41:1052. 10.1063/1.1658810
Sabiryanov RF, Jaswal SS. Magnons and magnon-phonon interactions in iron. Phys Rev Lett. 1999;83:2062. 10.1103/PhysRevLett.83.2062
Fennie CJ, Rabe KM. Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys Rev Lett. 2006;97:267602. 10.1103/PhysRevLett.97.267602
Lee JH, Fang L, Vlahos E, Ke X, Jung YW, Kourkoutis LF, et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature. 2010;466:954. 10.1038/nature09331
Lee JH, Rabe KM. Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys Rev Lett. 2010;104:207204. 10.1103/PhysRevLett.104.207204 20867057
Srinu Bhadram V, Rajeswaran B, Sundaresan A, Narayana C. Spin-phonon coupling in multiferroic RCrO3 (R-Y, Lu, Gd, Eu, Sm): A Raman study. Eur Phys Lett. 2013;101:17008. 10.1209/0295-5075/101/17008
Petit S, Moussa F, Hennion M, Pailhès S, Pinsard-Gaudart L, Ivanov A. Spin phonon coupling in hexagonal multiferroic YMnO3. Phys Rev Lett. 2007;99:266604. 18233597 10.1103/PhysRevLett.99.266604
Gupta MK, Mittal R, Zbiri M, Sharma N, Rols S, Schober H, et al. Spin-phonon coupling and high-temperature phase transition in multiferroic material YMnO3. J Mater Chem C. 2015;3:11717. 10.1039/C5TC02096D
Schleck R, Nahas Y, Lobo RP, Varignon J, Lepetit MB, Nelson CS, et al. Elastic and magnetic effects on the infrared phonon spectra of MnF2. Phys Rev B. 2010;82:054412. 10.1103/PhysRevB.82.054412
Benedek NA, Fennie CJ. Why are there so few perovskite ferroelectrics? J Phys Chem C. 2013;117:13339. 10.1021/jp402046t
Kim TH, Puggioni D, Yuan Y, Xie L, Zhou H, Campbell N, et al. Polar metals by geometric design. Nature. 2016;533:68. 27096369 10.1038/nature17628
Sai N, Fennie CJ, Demkov AA. Absence of critical thickness in an ultrathin improper ferroelectric film. Phys Rev Lett. 2009;102:107601. 10.1103/PhysRevLett.102.107601
Stengel M, Fennie CJ, Ghosez P. Spin-lattice coupling and phonon dispersion of CdCr2O4from first principles. Phys Rev B. 2012;86:094112.R.
Kamba S, Nuzhnyy D, Savinov M, Tolédano P, Laguta V, Brázda P, et al. Unusual ferroelectric and magnetic phases in multiferroic 2H-BaMnO3 ceramics. Phys Rev B. 2017;95:174103. 10.1103/PhysRevB.95.174103
Xu K, Lu XZ, Xiang H. Designing new ferroelectrics with a general strategy. Npj Quantum Mater. 2017;2:1. 10.1038/s41535-016-0001-8
Young J, Rondinelli JM. Improper ferroelectricity and piezoelectric responses in rhombohedral (A,A′)B2O6 perovskite oxides. Phys Rev B. 2014;89:174110. 10.1103/PhysRevB.89.174110
Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature. 2008;452:732. 10.1038/nature06817 18401406
Benedek NA, Fennie CJ. Hybrid improper ferroelectricity: A mechanism for controllable polarization-magnetization coupling. Phys Rev Lett. 2011;106:107204. 21469829 10.1103/PhysRevLett.106.107204
Zhang H, Weng Y, Yao X, Dong S. Charge transfer and hybrid ferroelectricity in (YFeO3)n/(YTiO3)n magnetic superlattices. Phys Rev B. 2015;91:195145 10.1103/PhysRevB.91.195145
Zhou Q, Rabe KM. Strain-Induced hybrid improper ferroelectricity in simple perovskites from first principles. ArXiv Prepr. ArXiv1306.1839 2013.
Stroppa A, Barone P, Jain P, Perez-Mato JM, Picozzi S. Hybrid improper ferroelectricity in a multiferroic and magnetoelectric metal-organic framework. Adv Mater. 2013;25:2284. 10.1002/adma.201204738
Stroppa A, Jain P, Barone P, Marsman M, Perez-Mato JM, Cheetham AK, et al. Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal-organic framework. Angew Chemie-Int Ed. 2011;50:5847. 10.1002/anie.201101405
Young J, Stroppa A, Picozzi S, Rondinelli JM. Tuning the ferroelectric polarization in AA′MnWO6 double perovskites through A cation substitution. Dalt Trans. 2015;44:10644. 10.1039/C4DT03521F
Zhao HJ, Ren W, Yang Y, Íñiguez J, Chen XM, Bellaiche L. Near room-temperature multiferroic materials with tunable ferromagnetic and electrical properties. Nat Commun. 2014;5:4021. 24865776 10.1038/ncomms5021
Varignon J, Bristowe NC, Bousquet E, Ghosez P. Coupling and electrical control of structural, orbital and magnetic orders in perovskites. Sci Rep. 2015;5:15364. 26482414 10.1038/srep15364
Cammarata A, Rondinelli JM. Ferroelectricity from coupled cooperative Jahn-Teller distortions and octahedral rotations in ordered Ruddlesden-Popper manganates. Phys Rev B. 2015;92:014102. 10.1103/PhysRevB.92.014102
Xu C, Li Y, Xu B, Íñiguez J, Duan W, Bellaiche L. Pressure-Induced multiferroics via pseudo Jahn-Teller effects and novel couplings. Adv Funct Mater. 2017;27:1604513. 10.1002/adfm.201604513
Tian Y, Stroppa A, Chai YS, Barone P, Perez-Mato M, Picozzi S, et al. High-temperature ferroelectricity and strong magnetoelectric effects in a hybrid organic-inorganic perovskite framework. Phys Status Solidi-Rapid Res Lett. 2015;9:62. 10.1002/pssr.201409470
Liu XQ, Wu JW, Shi XX, Zhao HJ, Zhou HY, Qiu RH, et al. Hybrid improper ferroelectricity in Ruddlesden-Popper Ca3(Ti,Mn)2O7 ceramics. Appl Phys Lett. 2015;106:202903. 10.1063/1.4921624
Senn MS, Bombardi A, Murray CA, Vecchini C, Scherillo A, Luo X, et al. Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping. Phys Rev Lett. 2015;114:035701. 25659007 10.1103/PhysRevLett.114.035701
Sim H, Kim BG. Octahedral tilting and ferroelectricity in RbANb2O7 (A = Bi, Nd) from first principles. Phys Rev B. 2014;89:144114. 10.1103/PhysRevB.89.144114
Benedek NA. Origin of ferroelectricity in a family of polar oxides: the Dion-Jacobson phases. Inorg Chem. 2014;53:3769. 10.1021/ic500106a
Dixon C, McNulty J, Knight K, Gibbs A, Lightfoot P. Phase transition behavior of the layered perovskite CsBi0.6La0.4Nb2O7: a hybrid improper ferroelectric. Crystals. 2017;7:135. 10.3390/cryst7050135
Benedek NA, Rondinelli JM, Djani H, Ghosez P, Lightfoot P. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalt Trans. 2015;44:10543. 10.1039/C5DT00010F
Oh YS, Luo X, Huang FT, Wang Y, Cheong SW. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals. Nat Mater. 2015;14:407. 25581628 10.1038/nmat4168
Pitcher MJ, Mandal P, Dyer MS, Alaria J, Borisov P, Niu H, et al. Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite. Science. 2015;347:420. 10.1126/science.1262118
Etxebarria I, Perez-Mato JM, Boullay P. The role of trilinear couplings in the phase transitions of aurivillius compounds. Ferroelectrics. 2010;401:17. 10.1080/00150191003670325
Ye F, Wang J, Sheng J, Hoffmann C, Gu T, Xiang HJ, et al. Soft antiphase tilt of oxygen octahedra in the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7. Phys Rev B. 2018;97:041112. 10.1103/PhysRevB.97.041112
Zhang J, Lin L, Zhang Y, Wu M, Yakobson BI, Dong S. Type-II multiferroic Hf2VC2F2 MXene monolayer with high transition temperature. J Am Chem Soc. 2018;140:9768. 10.1021/jacs.8b06475 29992814
Peng J, Zhang Y, Lin L, Lin L, Liu M. New iron-based multiferroics with improper ferroelectricity. J Phys D Appl Phys. 2018;51:243002. 10.1088/1361-6463/aac345
Dong S, Xiang H, Dagotto E. Magnetoelectricity in multiferroics: a theoretical perspective. Natl Sci Rev. 2019:6:1.
Boström HL, Senn MS, Goodwin AL. Recipes for improper ferroelectricity in molecular perovskites. Nat Commun. 2018;9:2380. 10.1038/s41467-018-04764-x 29915202
Mulder AT, Benedek NA, Rondinelli JM, Fennie CJ. Turning ABO3 antiferroelectrics into ferroelectrics Design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden-popper compounds. Adv Funct Mater. 2013;23:4810.
Zhao HJ, Íñiguez J, Ren W, Chen XM, Bellaiche L. Atomistic theory of hybrid improper ferroelectricity in perovskites. Phys Rev B. 2014;89:174101. 10.1103/PhysRevB.89.174101
Xu B, Wang D, Zhao HJ, Íñiguez J, Chen XM, Bellaiche L. Hybrid improper ferroelectricity in multiferroic superlattices: finite-temperature properties and electric-field-driven switching of polarization and magnetization. Adv Funct Mater. 2015;25:3626. 10.1002/adfm.201501113
Nowadnick EA, Fennie CJ. Domains and ferroelectric switching pathways in Ca3Ti2O7 from first principles. Phys Rev B. 2016;94:104105. 10.1103/PhysRevB.94.104105
Zanolli Z, Wojdeł JC, Íñiguez J, Ghosez P. Electric control of the magnetization in BiFeO3/LaFeO3 superlattices. Phys Rev B. 2013;88:060102.R. 10.1103/PhysRevB.88.060102
Kugel KI, Khomskii DI. Crystal structure and magnetic properties of substances with orbital degeneracy. Sov Phys JETP. 1973;64:1429.
Garcia-Castro AC, Ibarra-Hernandez W, Bousquet E, Romero AH. Direct magnetization-polarization coupling in BaCuF4. Phys Rev Lett. 2018;121:117601. 30265112 10.1103/PhysRevLett.121.117601
Gu T, Scarbrough T, Yang Y, Íñiguez J, Bellaiche L, Xiang HJ. Cooperative couplings between octahedral rotations and ferroelectricity in perovskites and related materials. Phys Rev Lett. 2018;120:197602. 10.1103/PhysRevLett.120.197602 29799252
Holakovsky J. A new type of the ferroelectric phase transition. Phys Status Solidi. 1973;56:615. 10.1002/pssb.2220560224
Mercy A, Bieder J, Íñiguez J, Ghosez P. Structurally triggered metal-insulator transition in rare-earth nickelates. Nat Commun. 2017;8:1677. 29167437 10.1038/s41467-017-01811-x
Liao Z, et al. Metal-insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching. PNAS. 2018;115:9515. 30185557 10.1073/pnas.1807457115
Yamauchi K, Barone P. Electronic ferroelectricity induced by charge and orbital orderings. J Phys Condens Matter. 2014;26:103201. 24552672 10.1088/0953-8984/26/10/103201
Muñoz A, Casais MT, Alonso JA, Martínez-Lope MJ, Martinez JL, Fernandez-Diaz MT. Complex magnetism and magnetic structures of the metastable HoMnO3 perovskite. Inorg Chem. 2001;40:1020. 10.1021/ic0011009
Zhou JS, Goodenough JB. Unusual evolution of the magnetic interactions versus structural distortions in RMnO3 perovskites. Phys Rev Lett. 2006;96:247202. 10.1103/PhysRevLett.96.247202 16907275
Picozzi S, Yamauchi K, Sanyal B, Sergienko IA, Dagotto E. Dual nature of improper ferroelectricity in a magnetoelectric multiferroic. Phys Rev Lett. 2007;99:227201. 10.1103/PhysRevLett.99.227201
Barone P, Yamauchi K, Picozzi S. Ferroelectricity due to orbital ordering in E-Type undoped rare-earth manganites. Phys Rev Lett. 2011;106:077201. 10.1103/PhysRevLett.106.077201 21405537
Okuyama D, Ishiwata S, Takahashi Y, Yamauchi K, Picozzi S, Sugimoto K, et al. Magnetically driven ferroelectric atomic displacements in orthorhombic YMnO3. Phys Rev B. 2011;84:054440. 10.1103/PhysRevB.84.054440
Iuşan D, Yamauchi K, Barone P, Sanyal B, Eriksson O, Profeta G, et al. Effects of strain on ferroelectric polarization and magnetism in orthorhombic HoMnO3. Phys Rev B. 2013;87:014403. 10.1103/PhysRevB.87.014403
Yamauchi K, Freimuth F, Blügel S, Picozzi S. Magnetically induced ferroelectricity in orthorhombic manganites: microscopic origin and chemical trends. Phys Rev B. 2008;78:014403. 10.1103/PhysRevB.78.014403
Aoyama T, Yamauchi K, Iyama A, Picozzi S, Shimizu K, Kimura T. Giant spin-driven ferroelectric polarization in TbMnO3 under high pressure. Nat Commun. 2014;5:4927. 10.1038/ncomms5927 25215855
Giovannetti G, Kumar S, Khomskii D, Picozzi S, Van Den Brink J. Multiferroicity in rare-earth nickelates RNiO3. Phys Rev Lett. 2009;103:156401. 19905654 10.1103/PhysRevLett.103.156401
Park H, Millis AJ, Marianetti CA. Site-selective mott transition in rare-earth-element nickelates. Phys Rev Lett. 2012;109:156402. 23102343 10.1103/PhysRevLett.109.156402
Varignon J, Grisolia MN, Íñiguez J, Barthélémy A, Bibes M. Complete phase diagram of rare-earth nickelates from first-principles. Npj Quantum Mater. 2017;2:21. 10.1038/s41535-017-0024-9
Malashevich A, Vanderbilt D. First principles study of improper ferroelectricity in TbMnO3. Phys Rev Lett. 2008;101:037210. 18764292 10.1103/PhysRevLett.101.037210
Xiang HJ, Wei SH, Whangbo MH, Da Silva JLF. Spin-Orbit coupling and ion displacements in multiferroic TbMnO3. Phys Rev Lett. 2008;101:037209. 18764291 10.1103/PhysRevLett.101.037209
Xiang HJ, Whangbo MH. Density-functional characterization of the multiferroicity in spin spiral chain cuprates. Phys Rev Lett. 2007;99:257203. 10.1103/PhysRevLett.99.257203 18233555
Chang TR, Jeng HT, Ren CY, Hsue CS. Charge-orbital ordering and ferroelectric polarization in multiferroic TbMn2O5 from first principles. Phys Rev B. 2011;84:024421. 10.1103/PhysRevB.84.024421
Giovannetti G, Van Den Brink J. Electronic correlations decimate the ferroelectric polarization of Multiferroic HoMn2O5. Phys Rev Lett. 2008;100:227603. 18643459 10.1103/PhysRevLett.100.227603
Partzsch S, Wilkins SB, Hill JP, Schierle E, Weschke E, Souptel D, et al. Observation of electronic ferroelectric polarization in multiferroic YMn2O5. Phys Rev Lett. 2011;107:057201. 21867092 10.1103/PhysRevLett.107.057201
Prokhnenko O, Feyerherm R, Dudzik E, Landsgesell S, Aliouane N, Chapon LC, et al. Enhanced ferroelectric polarization by induced dy spin order in multiferroic DyMnO3. Phys Rev Lett. 2007;98:057206. 10.1103/PhysRevLett.98.057206 17358896
Zhao HJ, Bellaiche L, Chen XM, Íñiguez J. Improper electric polarization in simple perovskite oxides with two magnetic sublattices. Nat Commun. 2017;8:14025. 10.1038/ncomms14025 28106057
Efremov DV, Van Den Brink J, Khomskii DI. Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nat Mater. 2004;3:853. 15558036 10.1038/nmat1236
Ederer C, Spaldin NA. A new route to magnetic ferroelectrics. Nat Mater. 2004;3:849. 15573112 10.1038/nmat1265
Kadomtseva AM, Popov YF, Vorob'ev GP, Kamilov KI, Ivanov VY, Mukhin AA, et al. Magnetoelectric phenomena in manganites R0.6Ca0.4MnO3 (R = Pr, Nd) with charge ordering suppressed by a magnetic field. J Exp Theor Phys. 2008;106:130. 10.1134/S106377610801010X
Giovannetti G, Kumar S, Van Den Brink J, Picozzi S. Magnetically induced electronic ferroelectricity in half-doped manganites. Phys Rev Lett. 2009;103:037601. 10.1103/PhysRevLett.103.037601 19659318
Kato K, Iida S, Yanai K, Mizushima K. Ferrimagnetic ferroelectricity of Fe3O4. J Magn Magn Mater. 1983;31-34:783.
Senn MS, Wright JP, Attfield JP. Charge order and three-site distortions in the Verwey structure of magnetite. Nature. 2012;481:173. 10.1038/nature10704
Yamauchi K, Fukushima T, Picozzi S. Ferroelectricity in multiferroic magnetite Fe3O4 driven by noncentrosymmetric Fe2+/Fe3+ charge-ordering: First-principles study. Phys Rev B. 2009;79:212404. 10.1103/PhysRevB.79.212404
Alexe M, Ziese M, Hesse D, Esquinazi P, Yamauchi K, Fukushima T, et al. Ferroelectric switching in multiferroic magnetite (Fe3O4) thin films. Adv Mater. 2009;21:4452. 10.1002/adma.200901381
Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature. 2005;436:1136. 10.1038/nature04039 16121175
Angst M, Hermann RP, Christianson AD, Lumsden MD, Lee C, Whangbo MH, et al. Charge order in LuFe2O4: antiferroelectric ground state and coupling to magnetism. Phys Rev Lett. 2008;101:227601. 19113522 10.1103/PhysRevLett.101.227601
Giovannetti G, Stroppa A, Picozzi S, Baldomir D, Pardo V, Blanco-Canosa S, et al. Dielectric properties and magnetostriction of the collinear multiferroic spinel CdV2O4. Phys Rev B. 2011;83:060402.R. 10.1103/PhysRevB.83.060402
Yamauchi K, Oguchi T, Picozzi S. Ab-initio prediction of magnetoelectricity in infinite-layer CaFeO2 and MgFeO2. J Phys Soc Japan. 2014;83:094712. 10.7566/JPSJ.83.094712
Lin L-F, Xu Q-R, Zhang Y, Zhang J-J, Liang Y-P, Dong S. Ferroelectric ferrimagnetic LiFe2F6: Charge-ordering-mediated magnetoelectricity. Phys Rev Mater. 2017;1:071401. 10.1103/PhysRevMaterials.1.071401
Yamauchi K, Picozzi S. Interplay between charge order, ferroelectricity, and ferroelasticity: tungsten bronze structures as a playground for multiferroicity. Phys Rev Lett. 2010;105:107202. 20867544 10.1103/PhysRevLett.105.107202
Park SY, Kumar A, Rabe KM. Charge-order-induced ferroelectricity in LaVO3/SrVO3 superlattices. Phys Rev Lett. 2017;118:087602. 10.1103/PhysRevLett.118.087602
Gupta K, Mahadevan P, Mavropoulos P, Ležaić M. Orbital-ordering-induced ferroelectricity in SrCrO3. Phys Rev Lett. 2013;111:077601. 10.1103/PhysRevLett.111.077601 23992082
Ogawa N, Ogimoto Y, Ida Y, Nomura Y, Arita R, Miyano K. Polar antiferromagnets produced with orbital order. Phys Rev Lett. 2012;108:157603. 22587284 10.1103/PhysRevLett.108.157603
Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili L, Zhao T, et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science. 2004;303:661. 10.1126/science.1094207 14752158
Yamada H, Ogawa Y, Ishii Y, Sato H, Kawasaki M, Akoh H, et al. Engineered interface of magnetic oxides. Science. 2004;305:646. 15286367 10.1126/science.1098867
Stengel M, Aguado-Puente P, Spaldin NA, Junquera J. Band alignment at metal/ferroelectric interfaces: Insights and artifacts from first principles. Phys Rev B. 2011;83:235112. 10.1103/PhysRevB.83.235112
Stengel M, Spaldin NA. Ab initio theory of metal-insulator interfaces in a finite electric field. Phys Rev B-Condens Matter Mater Phys. 2007;75:205121. 10.1103/PhysRevB.75.205121
Stengel M, Spaldin NA. Origin of the dielectric dead layer in nanoscale capacitors. Nature. 2006;443:679. 17036000 10.1038/nature05148
Di Sante D, Yamauchi K, Picozzi S. Beyond standard local density approximation in the study of magnetoelectric effects in Fe/BaTiO3 and Co/BaTiO3 interfaces. J Phys Condens Matter. 2013;25:066001. 10.1088/0953-8984/25/6/066001
Chen H, Ismail-Beigi S. Ferroelectric control of magnetization in La1-xSrxMnO3 manganites: A first-principles study. Phys Rev B. 2012;86:024433. 10.1103/PhysRevB.86.024433
Koçak AB, Varignon J, Lemal S, Ghosez P, Lepetit MB. Control of the orbital ordering in manganite superlattices and impact on properties. Phys Rev B. 2017;96:125155. 10.1103/PhysRevB.96.125155
Sadoc A, Mercey B, Simon C, Grebille D, Prellier W, Lepetit MB. Large increase of the curie temperature by orbital ordering control. Phys Rev Lett. 2010;104:046804. 10.1103/PhysRevLett.104.046804 20366729
Ramesh R. Thin films: Theory leads the way to new devices. Nat Nanotechnol. 2008;3:7. 10.1038/nnano.2007.430 18654438
Rondinelli JM, Stengel M, Spaldin NA. Carrier-mediated magnetoelectricity in complex oxide heterostructures. Nat Nanotechnol. 2008;3:46. 10.1038/nnano.2007.412 18654450
Niranjan MK, Burton JD, Velev JP, Jaswal SS, Tsymbal EY. Magnetoelectric effect at the SrRuO3/BaTiO3 (001) interface: An ab initio study. Appl Phys Lett. 2009;95:05250.
Bonfoh N, Tiem S, Lipinski P. Surface magnetoelectric effect in ferromagnetic metal films. Phys Rev Lett. 2007;101:137201.
Duan CG, Nan CW, Jaswal SS, Tsymbal EY. Universality of the surface magnetoelectric effect in half-metals. Phys Rev B. 2009;79:140403.R. 10.1103/PhysRevB.79.140403
Duan CG, Jaswal SS, Tsymbal EY. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys Rev Lett. 2006;97:047201. 16907608 10.1103/PhysRevLett.97.047201
Fechner M, Maznichenko IV, Ostanin S, Ernst A, Henk J, Bruno P, et al. Magnetic phase transition in two-phase multiferroics predicted from first principles. Phys Rev B. 2008;78:212406. 10.1103/PhysRevB.78.212406
Radaelli G, Petti D, Plekhanov E, Fina I, Torelli P, Salles BR, et al. Electric control of magnetism at the Fe/BaTiO3 interface. Nat Commun. 2014;5:3404. 10.1038/ncomms4404
Lee J, Sai N, Cai T, Niu Q, Demkov AA. Interfacial magnetoelectric coupling in tricomponent superlattices. Phys Rev B. 2010;81:144425. 10.1103/PhysRevB.81.144425
Niranjan MK, Velev JP, Duan C-G, Jaswal SS, Tsymbal EY. Magnetoelectric effect at the Fe3O4/BaTiO3 (001) interface: A first-principles study. Phys Rev B. 2008;78:104405. 10.1103/PhysRevB.78.104405
Yamauchi K, Sanyal B, Picozzi S. Interface effects at a half-metal/ferroelectric junction. Appl Phys Lett. 2007;91:062506. 10.1063/1.2767776
Hölzer M, Fechner M, Ostanin S, Mertig I. Ab initio study of magnetoelectricity in Fe/BaTiO3: the effects of n-doped perovskite interfaces. J Phys Condens Matter. 2011;23:455902. 10.1088/0953-8984/23/45/455902 22037417
Plekhanov E, Stroppa A, Picozzi S. Magneto-electric coupling in antiferromagnet/ferroelectric Mn2Au/BaTiO3 interface. J Appl Phys. 2016;120:074104. 10.1063/1.4961213
Burton JD, Tsymbal EY. Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys Rev B. 2009;80:174406. 10.1103/PhysRevB.80.174406
Bristowe NC, Stengel M, Littlewood PB, Pruneda JM, Artacho E. Electrochemical ferroelectric switching: Origin of polarization reversal in ultrathin films. Phys Rev B. 2012;85:024106. 10.1103/PhysRevB.85.024106
Duan CG, Velev JP, Sabirianov RF, Mei WN, Jaswal SS, Tsymbal EY. Tailoring magnetic anisotropy at the ferromagnetic/ferroelectric interface. Appl Phys Lett. 2008;92:122905. 10.1063/1.2901879
Nakamura K, Shimabukuro R, Fujiwara Y, Akiyama T, Ito T, Freeman AJ. Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. Phys Rev Lett. 2009;102:187201. 19518905 10.1103/PhysRevLett.102.187201
Tsujikawa M, Oda T. Finite electric field effects in the large perpendicular magnetic anisotropy surface Pt/Fe/Pt(001): A First-principles study. Phys Rev Lett. 2009;102:247203. 10.1103/PhysRevLett.102.247203
Lukashev PV, Burton JD, Jaswal SS, Tsymbal EY. Ferroelectric control of the magnetocrystalline anisotropy of the Fe/BaTiO3 (001) interface. J Phys Condens Matter. 2012;24:226003. 10.1088/0953-8984/24/22/226003
Niranjan MK, Duan CG, Jaswal SS, Tsymbal EY. Electric field effect on magnetization at the Fe/MgO(001) interface. Appl Phys Lett. 2010;96:222504. 10.1063/1.3443658
Zhang H, Richter M, Koepernik K, Opahle I, Tasnádi F, Eschrig H. Electric-field control of surface magnetic anisotropy: a density functional approach. New J Phys. 2009;11:043007. 10.1088/1367-2630/11/4/043007
Lee M, Choi H, Chung YC. Ferroelectric control of magnetic anisotropy of FePt/BaTiO3 magnetoelectric heterojunction: A density functional theory study. J Appl Phys. 2013;113:17C729. 10.1063/1.4800499
Fechner M, Zahn P, Ostanin S, Bibes M, Mertig I. Switching magnetization by 180° with an electric field. Phys Rev Lett. 2112;108:197206.
Chen H, Qiao Q, Marshall MS, Georgescu AB, Gulec A, Phillips PJ, et al. Reversible modulation of orbital occupations via an Interface-induced polar state in metallic manganites. Nano Lett. 2014;14:4965. 10.1021/nl501209p
Setyawan W, Curtarolo S. High-throughput electronic band structure calculations: Challenges and tools. Comput Mater Sci. 2010;49:299. 10.1016/j.commatsci.2010.05.010
Hautier G, Jain A, Ong SP. From the computer to the laboratory: materials discovery and design using first-principles calculations. J Mater Sci. 2012;47:7317. 10.1007/s10853-012-6424-0
Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002. 10.1063/1.4812323
Bennett JW, Garrity KF, Rabe KM, Vanderbilt D. Hexagonal ABC semiconductors as ferroelectrics. Phys Rev Lett. 2012;109:167602. 23215130 10.1103/PhysRevLett.109.167602
Zunger A. Inverse design in search of materials with target functionalities. Nat Rev Chem. 2018;2:121. 10.1038/s41570-018-0121