[en] Understanding and manipulating complex spin texture in multiferroics can offer new perspectives for electric field-controlled spin manipulation. In BiFeO3, a well-known room temperature multiferroic, the competition between various exchange interactions manifests itself as non-collinear spin order, i.e., an incommensurate spin cycloid with period 64 nm. We report on the stability and systematic expansion of the length of the spin cycloid in (110)-oriented epitaxial Co-doped BiFeO3 thin films. Neutron diffraction shows (i) this cycloid, despite its partly out-of-plane canted propagation vector, can be stabilized in thinnest films; (ii) the cycloid length expands significantly with decreasing film thickness; (iii) theory confirms a unique [112] cycloid propagation direction; and (iv) in the temperature dependence the cycloid length expands significantly close to TN. These observations are supported by Monte Carlo simulations based on a first-principles effective Hamiltonian method. Our results therefore offer new opportunities for nanoscale magnonic devices based on complex spin textures.
Disciplines :
Physics
Author, co-author :
Burns, Stuart R.
Sando, Daniel
Xu, Bin ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Dupé, Bertrand ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Russell, Lachlan
Deng, Guochu
Clements, Richard
Paull, Oliver H. C.
Seidel, Jan
Bellaiche, Laurent
Valanoor, Nagarajan
Ulrich, Clemens
Language :
English
Title :
Expansion of the spin cycloid in multiferroic BiFeO3 thin films
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).
Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).
Ratcliff, W. II, Lynn, J. W., Kiryukhin, V., Jain, P. & Fitzsimmons, M. R. Magnetic structures and dynamics of multiferroic systems obtained with neutron scattering. Quantum Mater. 1, 16003 (2016).
Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).
Waterfield Price, N. et al. Coherent magnetoelastic domains in multiferroic BiFeO 3 films. Phys. Rev. Lett. 117, 177601 (2016).
Ratcliff, W. II et al. Neutron diffraction investigations of magnetism in BiFeO 3 epitaxial films. Adv. Funct. Mater. 21, 1567–1574 (2011).
He, Q. et al. Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat. Commun. 2, 225 (2011).
Ko, K.-T. et al. Concurrent transition of ferroelectric and magnetic ordering near room temperature. Nat. Commun. 2, 567 (2011).
Lee, J. H. et al. Phase separation and electrical switching between two isosymmetric multiferroic phases in tensile strained BiFeO 3 thin films. Phys. Rev. B 89, 140101 (2014).
Bertinshaw, J. et al. Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films. Nat. Commun. 7, 12664 (2016).
Jang, B.-K. et al. Electric-field-induced spin disorder-to-order transition near a multiferroic triple phase point. Nat. Phys. 13, 189–196 (2017).
Kiselev, S. V., Ozerov, R. P. & Zdanov, G. S. Detection of magnetic order in ferroelectric BiFeO 3 by neutron diffraction. Sov. Phys. Dokl. 7, 742–744 (1963).
Roginskaya, Y. E., Tomashpolśkii, Y. Y., Venentsev, Y. N., Petrov, V. M. & Zhdanov, G. S. The nature of the dielectric and magnetic properties of BiFeO 3 . Sov. Phys. JETP 23, 47–51 (1966).
Sosnowska, I., Neumaier, T. P. & Steichele, E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C 15, 4835–4846 (1982).
Sosnowska, I., Löwenhaupt, M., David, W. I. F. & Ibberson, R. M. Investigation of the unusual magnetic spiral arrangement in BiFeO 3 . Phys. B 180–181, 117–118 (1992).
Sosnowska, I. & Zvezdin, A. Origin of the long period magnetic ordering in BiFeO 3 . J. Magn. Magn. Mater. 140–144, 167–168 (1995).
Smolenskiĭ, A. G. & Chupis, I. Ferroelectromagnets. Sov. Phys. Usp. 25, 475 (1982).
Lebeugle, D. et al. Electric-field-induced spin flop in BiFeO 3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008).
Popov, Y. F. et al. Linear magnetoelectric effect and phase transitions in bismuth ferrite. JETP Lett. 57, 69–73 (1993).
Popov, Y. F., Kadomtseva, A. M., Vorobév, G. P. & Zvezdin, A. K. Discovery of the linear magnetoelectric effect in magnetic ferroelectric BiFeO 3 in a strong magnetic field. Ferroelectrics 162, 135–140 (1994).
Tokunaga, M., Azuma, M. & Shimakawa, Y. High-field study of strong magnetoelectric coupling in single-domain crystals of BiFeO 3 . J. Phys. Soc. Jpn. 79, 64713 (2010).
Agbelele, A. et al. Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO 3 . Adv. Mater. 29, 1602327 (2017).
Popkov, A. F. et al. Cycloid manipulation by electric field in BiFeO 3 films: coupling between polarization, octahedral rotation, and antiferromagnetic order. Phys. Rev. B 92, 140414(R) (2015).
Sando, D. et al. Crafting the magnonic and spintronic response of BiFeO 3 films by epitaxial strain. Nat. Mater. 12, 641–646 (2013).
Sosnowska, I., Schäfer, W., Kockelmann, W., Andersen, K. H. & Troyanchuk, I. O. Crystal structure and spiral magnetic ordering of BiFeO 3 doped with manganese. Appl. Phys. A 74, S1040–S1042 (2002).
Buhot, J. et al. Driving spin excitations by hydrostatic pressure in BiFeO 3 . Phys. Rev. Lett. 115, 267204 (2015).
Kadomtseva, A. M., Zvezdin, A. K., Popov, Y. F., Pyatakov, A. P. & Vorob'ev, G. P. Space-time parity violation and magnetoelectric interactions in antiferromagnets. J. Exp. Theor. Phys. Lett. 79, 571–581 (2004).
Bai, F. et al. Destruction of spin cycloid in (111) c -oriented BiFeO 3 thin films by epitiaxial constraint: enhanced polarization and release of latent magnetization. Appl. Phys. Lett. 86, 032511 (2005).
Cazayous, M. et al. Possible observation of cycloidal electromagnons in BiFeO 3 . Phys. Rev. Lett. 101, 37601 (2008).
Ramirez, M. O. et al. Two-phonon coupling to the antiferromagnetic phase transition in multiferroic BiFeO 3 . Appl. Phys. Lett. 92, 022511 (2008).
Ramirez, M. O. et al. Spin-charge-lattice coupling through resonant multi-magnon excitations in multiferroic BiFeO 3 . Appl. Phys. Lett. 94, 161905 (2009).
Ramirez, M. O. et al. Magnon sidebands and spin-charge coupling in bismuth ferrite probed by nonlinear optical spectroscopy. Phys. Rev. B 79, 224106 (2009).
Rovillain, P. et al. Electric-field control of spin waves at room temperature in multiferroic BiFeO 3 . Nat. Mater. 9, 975–979 (2010).
Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D Appl. Phys. 43, 264001 (2010).
Chen, W. & Sigrist, M. Dissipationless multiferroic magnonics. Phys. Rev. Lett. 114, 157203 (2015).
Ratcliff, W. II et al. Electric-field-controlled antiferromagnetic domains in epitaxial BiFeO 3 thin films probed by neutron diffraction. Phys. Rev. B 87, 140405(R) (2013).
Ke, X. et al. Magnetic structure of epitaxial multiferroic BiFeO 3 films with engineered ferroelectric domains. Phys. Rev. B 82, 134448 (2010).
Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).
Gareeva, Z. V., Popkov, A. F., Soloviov, S. V. & Zvezdin, A. K. Field-induced phase transitions and phase diagrams in BiFeO 3 -like multiferroics. Phys. Rev. B 87, 214413 (2013).
Rahmedov, D., Wang, D., Íñiguez, J. & Bellaiche, L. Magnetic cycloid of BiFeO 3 from atomistic simulations. Phys. Rev. Lett. 109, 037207 (2012).
Bhattacharjee, S., Rahmedov, D., Bellaiche, L. & Wang, D. Novel magnetic arrangement and structural phase transition induced by spin-lattice coupling in multiferroics. MRS Commun. 3, 213–218 (2013).
Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).
Raeliarijaona, A., Singh, S., Fu, H. & Bellaiche, L. Predicted coupling of the electromagnetic angular momentum density with magnetic moments. Phys. Rev. Lett. 110, 137205 (2013).
Almahmoud, E., Kornev, I. & Bellaiche, L. Dependence of Curie temperature on the thickness of an ultrathin ferroelectric film. Phys. Rev. B 81, 064105 (2010).
Reehuis, M. et al. Neutron diffraction study of spin and charge ordering in SrFeO 3−δ . Phys. Rev. B 85, 184109 (2012).
Ramazanoglu, M. et al. Temperature-dependent properties of the magnetic order in single-crystal BiFeO 3 . Phys. Rev. B 83, 174434 (2011).
Callori, S. J. et al. Strain-induced magnetic phase transition in SrCoO 3−δ thin films. Phys. Rev. B 91, 140405(R) (2015).
Zhong, W., Vanderbilt, D. & Rabe, K. First-principles theory of ferroelectric phase transitions for perovskites: the case of BaTiO 3 . Phys. Rev. B 52, 6301 (1995).
Neaton, J. B., Ederer, C., Waghmare, U. V., Spaldin, N. A. & Rabe, K. M. First-principles study of spontaneous polarization in multiferroic BiFeO 3 . Phys. Rev. B 71, 14113 (2005).
Fischer, P., Polomska, M., Sosnowska, I. & Szymanski, M. Temperature dependence of the crystal and magnetic structures of BiFeO 3 . J. Phys. C Solid State Phys. 13, 1931–1940 (1980).
Albrecht, D. et al. Ferromagnetism in multiferroic BiFeO 3 films: a first-principles-based study. Phys. Rev. B 81, 140401 (2010).
Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 60401 (2005).
Bellaiche, L., Gui, Z. & Kornev, I. A. A simple law governing coupled magnetic orders in perovskites. J. Phys. Condens. Matter 24, 312201 (2012).
Wang, D., Weerasinghe, J. & Bellaiche, L. Atomistic molecular dynamic simulations of multiferroics. Phys. Rev. Lett. 109, 67203 (2012).
Fishman, R. S., Haraldsen, J. T., Furukawa, N. & Miyahara, S. Spin state and spectroscopic modes of multiferroic BiFeO 3 . Phys. Rev. B 87, 134416 (2013).
Fishman, R. S. The microscopic model of BiFeO 3 . Phys. B Condens. Matter 536, 115–117 (2018).
Vanderbilt, D. & Cohen, M. H. Monoclinic and triclinic phases in higher-order Devonshire theory. Phys. Rev. B 63, 94108 (2001).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.