[en] Skyrmions and antiskyrmions in magnetic ultrathin films are characterised by a topological charge describing how the spins wind around their core. This topology governs their response to forces in the rigid core limit. However, when internal core excitations are relevant, the dynamics become far richer. We show that current-induced spin-orbit torques can lead to phenomena such as trochoidal motion and skyrmion-antiskyrmion pair generation that only occurs for either the skyrmion or antiskyrmion, depending on the symmetry of the underlying Dzyaloshinskii-Moriya interaction. Such dynamics are induced by core deformations, leading to a time-dependent helicity that governs the motion of the skyrmion and antiskyrmion core. We compute the dynamical phase diagram through a combination of atomistic spin simulations, reduced-variable modelling, and machine learning algorithms. It predicts how spin-orbit torques can control the type of motion and the possibility to generate skyrmion lattices by antiskyrmion seeding.
Disciplines :
Physics
Author, co-author :
Ritzmann, Ulrike
von Malottki, Stephan
Kim, Joo-Von
Heinze, Stefan
Sinova, Jairo
Dupé, Bertrand ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Language :
English
Title :
Trochoidal motion and pair generation in skyrmion and antiskyrmion dynamics under spin–orbit torques
Bogdanov, A. & Yablonskii, D. Contribution to the theory of inhomogeneous states of magnets in the region of magnetic-field-induced phase transitions. Mixed state of antiferromagnets. Zh. Eksp. Teor. Fiz. 69, 142–146 (1989)
Bogdanov, A. & Hubert, A. The stability of vortex-like structures in uniaxial ferromagnets. J. Magn. Magn. Mater. 195, 182–192 (1999)
Hagemeister, J., Romming, N., Von Bergmann, K., Vedmedenko, E. Y. & Wiesendanger, R. Stability of single skyrmionic bits. Nat. Commun. 6, 8455 (2015)
Rohart, S., Miltat, J. & Thiaville, A. Path to collapse for an isolated Néel skyrmion. Phys. Rev. B 93, 665–666 (2016)
Stosic, D., Mulkers, J., Van Waeyenberge, B., Ludermir, T. B. & Milošević, M. V. Paths to collapse for isolated skyrmions in few-monolayer ferromagnetic films. Phys. Rev. B 95, 214418 (2017)
Koshibae, W. & Nagaosa, N. Theory of antiskyrmions in magnets. Nat. Commun. 7, 10542 (2016)
Everschor-Sitte, K., Sitte, M., Valet, T., Abanov, A. & Sinova, J. Skyrmion production on demand by homogeneous DC currents. New J. Phys. 19, 092001 (2017)
Stier, M., Häusler, W., Posske, T., Gurski, G. & Thorwart, M. Skyrmion–anti-skyrmion pair creation by in-plane currents. Phys. Rev. Lett. 118, 267203 (2017)
Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230 (1973)
Guslienko, K. Y. et al. Eigenfrequencies of vortex state excitations in magnetic submicron-size disks. J. Appl. Phys. 91, 8037 (2002)
Choe, S. B. et al. Vortex core-driven magnetization dynamics. Science 304, 420–422 (2004)
Ivanov, B. & Zaspel, C. Excitation of spin dynamics by spin-polarized current in vortex state magnetic disks. Phys. Rev. Lett. 99, 247208 (2007)
Mistral, Q. et al. Current-driven vortex oscillations in metallic nanocontacts. Phys. Rev. Lett. 100, 257201 (2008)
Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8, 839–844 (2013)
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013)
Lin, S.-Z., Reichhardt, C., Batista, C. D. & Saxena, A. Driven skyrmions and dynamical transitions in chiral magnets. Phys. Rev. Lett. 110, 207202 (2013)
Lin, S.-Z. & Hayami, S. Ginzburg–Landau theory for skyrmions in inversion-symmetric magnets with competing interactions. Phys. Rev. B 93, 064430 (2016)
Leonov, A. O. & Mostovoy, M. Edge states and skyrmion dynamics in nanostripes of frustrated magnets. Nat. Commun. 8, 14394 (2017)
Büttner, F. et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225–228 (2015)
Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013)
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017)
Nayak, A. K. et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548, 561–566 (2017)
Hoffmann, M. et al. Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii–Moriya interaction. Nat. Commun. 8, 308 (2017)
Güngördü, U., Nepal, R., Tretiakov, O. A., Belashchenko, K. & Kovalev, A. A. Stability of skyrmion lattices and symmetries of quasi-two-dimensional chiral magnets. Phys. Rev. B 93, 064428 (2016)
Fert, A. & Levy, P. M. Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 44, 1538–1541 (1980)
Dupé, B., Hoffmann, M., Paillard, C. & Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. Nat. Commun. 5, 4030 (2014)
Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013)
Dupé, B., Kruse, C. N., Dornheim, T. & Heinze, S. How to reveal metastable skyrmionic spin structures by spin-polarized scanning tunneling microscopy. New J. Phys. 18, 055015 (2016)
Böttcher, M., Heinze, S., Egorov, S., Sinova, J. & Dupé, B. B-T phase diagram of Pd/Fe/Ir(111) computed with parallel tempering Monte Carlo. Preprint at https://arxiv.org/abs/1707.01708 (2018)
von Malottki, S., Dupé, B., Bessarab, P. F., Delin, A. & Heinze, S. Enhanced skyrmion stability due to exchange frustration. Sci. Rep. 7, 12299 (2017)
Leonov, A. O. & Mostovoy, M. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat. Commun. 6, 8275 (2015)
Zhang, X. et al. Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition. Nat. Commun. 8, 1717 (2017)
Hu, Y., Chi, X., Li, X., Liu, Y. & Du, A. Creation and annihilation of skyrmions in the frustrated magnets with competing exchange interactions. Sci. Rep. 7, 16079 (2017)
Rózsa, L. et al. Skyrmions with attractive interactions in an ultrathin magnetic film. Phys. Rev. Lett. 117, 157205 (2016)
Sondheimer, E. H. The mean free path of electrons in metals. Adv. Phys. 50, 499–537 (2001)
Rózsa, L. et al. Formation and stability of metastable skyrmionic spin structures with various topologies in an ultrathin film. Phys. Rev. B 95, 094423 (2017)
Slonczewski, J. C. Theory of domain-wall motion in magnetic films and platelets. J. Appl. Phys. 44, 1759–1770 (1973)
Van Waeyenberge, B. et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461–464 (2006)
Yamada, K. et al. Electrical switching of the vortex core in a magnetic disk. Nat. Mater. 6, 270–273 (2007)
Gaididei, Y., Kravchuk, V. P. & Sheka, D. D. Magnetic vortex dynamics induced by an electrical current. Int. J. Quantum Chem. 110, 83–97 (2010)
Kim, J.-V. in Solid State Physics (eds Camley, R. E. & Stamps, R. L.) 217–294 (Academic, San Diego, 2012)
Bogdanov, A. N. & Rößler, U. K. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 87, 037203 (2001)
Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012)