[en] We image simultaneously the geometric, the electronic, and the magnetic structures of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX) to independently characterize the geometric as well as the electronic and magnetic structures of nonflat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the electronic structure at the atomic level and the correlation with the resultant spin -spiral ground state. By additionally utilizing adatom manipulation, we reveal the chiral magnetic ground state of portions of the unit cell that were not previously imaged with spin-polarized scanning tunneling microscopy alone. Using density functional theory, we investigate the structural and electronic properties of the reconstructed bilayer and identify the favorable stoichiometry regime in agreement with our experimental result.
Disciplines :
Physics
Author, co-author :
Hauptmann, Nadine
Dupé, Melanie
Hung, Tzu-Chao
Lemmens, Alexander K.
Wegner, Daniel
Dupé, Bertrand ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Khajetoorians, Alexander A.
Language :
English
Title :
Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale
A. N. Bogdanov and D. A. Yablonskii, Zh. Eksp. Teor. Fiz. 95, 178 (1989)
A. N. Bogdanov and D. A. Yablonskii, [JETP 68, 101 (1989)].
S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009). 10.1126/science.1166767
X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature (London) 465, 901 (2010). 10.1038/nature09124
F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R. A. Duine, K. Everschor, M. Garst, and A. Rosch, Science 330, 1648 (2010). 10.1126/science.1195709
W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Science 349, 283 (2015). 10.1126/science.aaa1442
J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nat. Nanotechnol. 8, 839 (2013). 10.1038/nnano.2013.210
T. Moriya, Phys. Rev. 120, 91 (1960). 10.1103/PhysRev.120.91
I. E. Dzialoshinskii, Zh. Eksp. Teor. Fiz. 32, 1547 (1957)
I. E. Dzialoshinskii, [Sov. Phys. JETP 5, 1259 (1957)].
N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science 341, 636 (2013). 10.1126/science.1240573
P.-J. Hsu, A. Kubetzka, A. Finco, N. Romming, K. von Bergmann, and R. Wiesendanger, Nat. Nanotechnol. 12, 123 (2017). 10.1038/nnano.2016.234
C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C. A. F. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhüter, J. M. George, M. Weigand, J. Raabe, V. Cros, and A. Fert, Nat. Nanotechnol. 11, 444 (2016). 10.1038/nnano.2015.313
A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152 (2013). 10.1038/nnano.2013.29
S. Woo, K. Litzius, B. Krüger, M.-Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M.-A. Mawass, P. Fischer, M. Kläui, and G. S. D. Beach, Nat. Mater. 15, 501 (2016). 10.1038/nmat4593
C. Hanneken, A. Kubetzka, K. von Bergmann, and R. Wiesendanger, New J. Phys. 18, 055009 (2016). 10.1088/1367-2630/18/5/055009
W. Legrand, D. Maccariello, N. Reyren, K. Garcia, C. Moutafis, C. Moreau-Luchaire, S. Collin, K. Bouzehouane, V. Cros, and A. Fert, Nano Lett. 17, 2703 (2017). 10.1021/acs.nanolett.7b00649
J.-V. Kim and M.-W. Yoo, Appl. Phys. Lett. 110, 132404 (2017). 10.1063/1.4979316
M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blugel, and R. Wiesendanger, Nature (London) 447, 190 (2007). 10.1038/nature05802
F. J. Giessibl, Rev. Mod. Phys. 75, 949 (2003). 10.1103/RevModPhys.75.949
R. Schmidt, C. Lazo, H. Hölscher, U. H. Pi, V. Caciuc, A. Schwarz, R. Wiesendanger, and S. Heinze, Nano Lett. 9, 200 (2009). 10.1021/nl802770x
U. Kaiser, A. Schwarz, and R. Wiesendanger, Nature (London) 446, 522 (2007). 10.1038/nature05617
F. Pielmeier and F. J. Giessibl, Phys. Rev. Lett. 110, 266101 (2013). 10.1103/PhysRevLett.110.266101
J. Grenz, A. Köhler, A. Schwarz, and R. Wiesendanger, Phys. Rev. Lett. 119, 047205 (2017). 10.1103/PhysRevLett.119.047205
N. Hauptmann, J. Gerritsen, D. Wegner, and A. A. Khajetoorians, Nano Lett. 17, 5660 (2017). 10.1021/acs.nanolett.7b02538
P.-J. Hsu, A. Finco, L. Schmidt, A. Kubetzka, K. von Bergmann, and R. Wiesendanger, Phys. Rev. Lett. 116, 017201 (2016). 10.1103/PhysRevLett.116.017201
F. J. Giessibl, Appl. Phys. Lett. 73, 3956 (1998). 10.1063/1.122948
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.97.100401 for experimental details, large-scale and voltage-dependent SP-STM images, constant height images, Fe adatom manipulation, analysis of the periodicity of the spin spirals, voltage-dependent SPEX images, and details of the ab initio calculations.
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). 10.1103/PhysRevB.47.558
G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994). 10.1103/PhysRevB.49.14251
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). 10.1103/PhysRevB.54.11169
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). 10.1016/0927-0256(96)00008-0
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). 10.1103/PhysRevB.59.1758
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). 10.1103/PhysRevB.50.17953
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 10.1103/PhysRevLett.77.3865
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). 10.1103/PhysRevB.13.5188
K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). 10.1107/S0021889811038970
J. Hrbek, J. de la Figuera, K. Pohl, T. Jirsak, J. A. Rodriguez, A. K. Schmid, N. C. Bartelt, and R. Q. Hwang, J. Phys. Chem. B 103, 10557 (1999). 10.1021/jp992564z
G. O. Pötschke and R. J. Behm, Phys. Rev. B 44, 1442 (1991). 10.1103/PhysRevB.44.1442
H. Brune, H. Röder, C. Boragno, and K. Kern, Phys. Rev. B 49, 2997 (1994). 10.1103/PhysRevB.49.2997
S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Nat. Phys. 7, 713 (2011). 10.1038/nphys2045
D. Serrate, P. Ferriani, Y. Yoshida, S.-W. Hla, M. Menzel, K. von Bergmann, S. Heinze, A. Kubetzka, and R. Wiesendanger, Nat. Nanotechnol. 5, 350 (2010). 10.1038/nnano.2010.64
L. H. Zhou, F. Meier, J. Wiebe, and R. Wiesendanger, Phys. Rev. B 82, 012409 (2010). 10.1103/PhysRevB.82.012409
P. Ferriani, C. Lazo, and S. Heinze, Phys. Rev. B 82, 054411 (2010). 10.1103/PhysRevB.82.054411