Influence of synthesis methods with low annealing temperature on the structural and magnetic properties of CoFe2O4 nanopowders for permanent magnet application
Cobalt ferrite; Maximum energy product; Permanent magnet; Synthesis methods
Abstract :
[en] Cobalt ferrite nanopowders were prepared with low annealing temperatures (400 °C and 600 °C) using four different synthesis methods: co-precipitation, sol-gel, sol-gel autocombustion and microemulsion. The pure phase is obtained in all the samples and confirmed using the XRD diffraction. The crystallite size is calculated based on the XRD patterns and ranged between ~9 nm and ~26 nm. The SEM micrographs show an agglomeration with an increase of grain size between 400 °C and 600 °C samples for all the used methods. The magnetic properties are given. The best obtained values are MS = 80,319 emu/g, HC = 2057,97 Oe and (BH)max = 0.3313 MGOe for co-precipitation, sol-gel and sol-gel autocombustion, respectively. An improvement of 89% in (BH)max value is observed in the case of sol-gel auto-combustion when we go from 400 °C to 600 °C.
Research Center/Unit :
GreenMat
Disciplines :
Physics
Author, co-author :
Abraime, B.
El Maalam, Khadija
Fkhar, L.
Mahmoud, Abdelfattah ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Influence of synthesis methods with low annealing temperature on the structural and magnetic properties of CoFe2O4 nanopowders for permanent magnet application
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abraime, B., Mahmoud, A., Boschini, F., Ait Tamerd, M., Benyoussef, A., Hamedoun, M., Xiao, Y., El Kenz, A., Mounkachi, O., Tunable maximum energy product in CoFe2O4 nanopowder for permanent magnet application. J. Magn. Magn. Mater. 467 (2018), 129–134.
B.D. Cullity, C.D. Graham, Introduction to magnetic materials, 2009.
Turchenko, V., Trukhanov, A., Trukhanov, S., Balasoiu, M., Lupu, N., Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties. J. Magn. Magn. Mater. 477 (2019), 9–16, 10.1016/j.jmmm.2018.12.101.
Trukhanov, A.V., Darwish, M.A., Panina, L.V., Morchenko, A.T., Kostishyn, V.G., Turchenko, V.A., Vinnik, D.A., Trukhanova, E.L., Astapovich, K.A., Kozlovskiy, A.L., Zdorovets, M., Trukhanov, S.V., Features of crystal and magnetic structure of the BaFe12-xGaxO19 (x ≤ 2) in the wide temperature range. J. Alloy. Compd. 791 (2019), 522–529, 10.1016/j.jallcom.2019.03.314.
Hajalilou, A., Kianvash, A., Lavvafi, H., Shameli, K., Nanostructured soft magnetic materials synthesized via mechanical alloying: a review. J. Mater. Sci.: Mater. Electron. 29 (2018), 1690–1717.
Jabbar, R., Sabeeh, S.H., Hameed, A.M., Structural, dielectric and magnetic properties of Mn+2 doped cobalt ferrite nanoparticles. J. Magn. Magn. Mater., 494, 2020 165726.
Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., Liu, J.P., Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 23 (2011), 821–842.
Wunsch, B., Christen, T., Improved EMC filter performance of ferrite cores based on hysteresis and saturation. 2019 International Symposium on Electromagnetic Compatibility – EMC EUROPE, 2019, 444–449.
Abraime, B., Ait Tamerd, M., Mahmoud, A., Boschini, F., Benyoussef, A., Hamedoun, M., Xiao, Y., El Kenz, A., Mounkachi, O., Experimental and theoretical investigation of SrFe12O19 nanopowder for permanent magnet application. Ceram. Int. 43 (2017), 15999–16006.
Oh, N., Park, S., Kim, Y., Kwon, H., Kim, S., Lim, K., Magnetic properties of M-type strontium ferrites with different heat treatment conditions. Rare Met., 3, 2019.
Guillot, M., Le Gall, H., Leblanc, M., What kind of symmetry in ferrimagnetic garnets: Cubic or not?. J. Magn. Magn. Mater. 86 (1990), 13–18.
J.P. Suchet, Electrical conduction in solid materials (Physicochemical Bases and Possible Applications), 1975.
Gillot, B., Nivoix, V., New cation-deficient vanadium–iron spinels with a high vacancy content. Mater. Res. Bull. 34 (1999), 1735–1747.
Walz, F., The Verwey transition – A topical review. J. Phys.: Condens. Matter, 14, 2002.
Mehdiyev, T.R., Babayeva, N.R., Gashimov, A.M., Habibzade, A.A., Abdullayev, G.M., Electromagnetic Processes in Frequency-Dependent Resistor Sheath. Fizika XIV (2008), 80–88.
Raut, A.V., Barkule, R.S., Shengule, D.R., Jadhav, K.M., Synthesis, structural investigation and magnetic properties of Zn 2+ substituted cobalt ferrite nanoparticles prepared by the sol-gel auto-combustion technique. J. Magn. Magn. Mater. 358–359 (2014), 87–92.
Mund, H.S., Ahuja, B.L., Structural and magnetic properties of Mg doped cobalt ferrite nano particles prepared by sol-gel method. Mater. Res. Bull. 85 (2017), 228–233.
Kavas, H., Baykal, A., Toprak, M.S., Köseoǧlu, Y., Sertkol, M., Aktaş, B., Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. J. Alloy. Compd. 479 (2009), 49–55.
Coker, V.S., Telling, N.D., Van Der Laan, G., Pattrick, R.A.D., Pearce, C.I., Arenholz, E., Tuna, F., Winpenny, R.E.P., Lloyd, J.R., Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties. ACS Nano 3 (1922), 1922–1928.
Winiarska, K., Szczygieł, I., Klimkiewicz, R., Manganese-zinc ferrite synthesis by the sol-gel autocombustion method, effect of the precursor on the ferrite's catalytic properties. Ind. Eng. Chem. Res. 52 (2013), 353–361.
Mounkachi, O., Lamouri, R., Abraime, B., Ez-Zahraouy, H., El Kenz, A., Hamedoun, M., Benyoussef, A., Exploring the magnetic and structural properties of Nd-doped Cobalt nano-ferrite for permanent magnet applications. Ceram. Int., 43, 2017.
Saura-Múzquiz, M., Granados-Miralles, C., Andersen, H.L., Stingaciu, M., Avdeev, M., Christensen, M., Nanoengineered high-performance hexaferrite magnets by morphology-induced alignment of tailored nanoplatelets. ACS Applied Nano Mater. 1 (2018), 6938–6949.
Chen, W., Xiao, C., Huang, C., Wu, X., Wu, W., Wang, Q., Li, J., Zhou, K., Huang, Y., Exchange-coupling behavior in soft/hard Li0.3Co0.5Zn0.2Fe2O4/SrFe12O19 core/shell composite synthesized by the two-step ball-milling-assisted ceramic process. J. Mater. Sci.: Mater. Electron. 30 (2019), 1579–1590.
Long, N.V., Yang, Y., Teranishi, T., Thi, C.M., Cao, Y., Nogami, M., Related magnetic properties of CoFe2O4 cobalt ferrite particles synthesised by the polyol method with NaBH4and heat treatment: new micro and nanoscale structures. RSC Adv. 5 (2015), 56560–56569.
Özgür, Ü., Alivov, Y., Morkoç, H., Microwave ferrites, part 1: fundamental properties. J. Mater. Sci.: Mater. Electron. 20 (2009), 789–834.
Shen, S.-Y., Zheng, H., Zheng, P., Wu, Q., Deng, J.-X., Ying, Z.-H., Zheng, L., Microstructure, magnetic properties of hexagonal barium ferrite powder based on calcination temperature and holding time. Rare Met., 2018.
Bahgat, M., Awan, F.M., Hanafy, H.A., Alzeghaibi, O.N., Synthesis of hard magnetic material from secondary. Resources 8 (2014), 936–941.
Pedrosa, F.J., Rial, J., Golasinski, K.M., Guzik, M.N., Quesada, A., Fernández, J.F., Deledda, S., Camarero, J., Bollero, A., Towards high performance CoFe2O4 isotropic nanocrystalline powder for permanent magnet applications. Appl. Phys. Lett., 109, 2016, 223105.
Skomski, R., Coey, J., Permanent Magnetism. 1999, Institute of Physics Publishing.
Kumar, Y., Shirage, P.M., Highest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approach. J. Mater. Sci. 52 (2017), 4840–4851.
Zhang, Y., Yang, Z., Yin, D., Liu, Y., Fei, C., Xiong, R., Shi, J., Yan, G., Composition and magnetic properties of cobalt ferrite nano-particles prepared by the co-precipitation method. J. Magn. Magn. Mater. 322 (2010), 3470–3475.
Yang, H., Liu, M., Lin, Y., Dong, G., Hu, L., Zhang, Y., Tan, J., Enhanced remanence and (BH)max of BaFe12O19/CoFe2O4 composite ceramics prepared by the microwave sintering method. Mater. Chem. Phys. 160 (2015), 5–11.
Liu, M., Yang, H., Lin, Y., Yang, Y., Simultaneous enhancements of remanence and (BH)max in BaFe12O19/CoFe2O4 nanocomposite powders. J. Alloys Compd., 2015.
Zhang, W., Zuo, X., Zhang, D., Wu, C., Silva, S.R.P., Cr 3+ substituted spinel ferrite nanoparticles with high coercivity. Nanotechnology., 27, 2016.
Liu, X., Zhong, W., Gu, B., Du, Y., Exchange-coupling interaction in nanocomposite SrFe12O19/γ-Fe 2O3 permanent ferrites. J. Appl. Phys. 92 (2002), 1028–1032.
Panchal, N., Jotania, R., Enhancement of magnetic properties in Co-Sr ferrite nano composites prepared by an SHS route. Solid State Phenom. 209 (2014), 164–168.
Granados-Miralles, C., Saura-Múzquiz, M., Andersen, H.L., Quesada, A., Ahlburg, J.V., Dippel, A.-C., Canévet, E., Christensen, M., Approaching Ferrite-Based Exchange-Coupled Nanocomposites as Permanent Magnets. ACS Appl. Nano Mater., 2018 acsanm.8b00808.
Tirpude, S.A., Sarkar, N.N., Sawadh, P.S., Rewatkar, K.G., Effect of substitution of divalent cation on structural and magnetic properties of spinel ferrite. J. Gujarat Res. Soc. 21 (2019), 13–15.
Behera, P., Ravi, S., Influence of Ti-substitution on structural, magnetic and dielectric properties of M-type barium hexaferrite. J. Electron. Mater. 48 (2019), 5062–5074.
Yadav, R.S., Havlica, J., Hnatko, M., Šajgalík, P., Alexander, C., Palou, M., Bartoníčková, E., Boháč, M., Frajkorová, F., Masilko, J., Zmrzlý, M., Kalina, L., Hajdúchová, M., Enev, V., Magnetic properties of Co 1–x Zn x Fe 2 O 4 spinel ferrite nanoparticles synthesized by starch-assisted sol-gel autocombustion method and its ball milling. J. Magn. Magn. Mater. 378 (2015), 190–199.
Danno, T., Asaoka, H., Nakanishi, M., Fujii, T., Ikeda, Y., Kusano, Y., Takada, J., Formation mechanism of nano-crystalline β-Fe2O3 particles with bixbyite structure and their magnetic properties. J. Phys. Conf. Ser., 200, 2010, 82003.
Hajalilou, A., Mazlan, S.A., A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties. Appl. Phys. A Mater. Sci. Process., 122, 2016.
Meron, T., Rosenberg, Y., Lereah, Y., Markovich, G., Synthesis and assembly of high-quality cobalt ferrite nanocrystals prepared by a modified sol-gel technique. J. Magn. Magn. Mater. 292 (2005), 11–16.
Toksha, B.G., Shirsath, S.E., Patange, S.M., Jadhav, K.M., Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol-gel auto combustion method. Solid State Commun. 147 (2008), 479–483.
Desai, S.S., Patange, S.M., Patil, A.D., Gore, S.K., Jadhav, S.S., Effects of Zn2+-Zr4+ ions on the structural, mechanical, electrical, and optical properties of cobalt ferrites synthesized via the sol–gel route. J. Phys. Chem. Solids 133 (2019), 171–177, 10.1016/j.jpcs.2019.05.024.
Venturini, J., Wermuth, T.B., Machado, M.C., Arcaro, S., Alves, A.K., da Cas Viegas, A., Bergmann, C.P., The influence of solvent composition in the sol-gel synthesis of cobalt ferrite (CoFe2O4): A route to tuning its magnetic and mechanical properties. J. Eur. Ceramic Soc. 39 (2019), 3442–3449, 10.1016/j.jeurceramsoc.2019.01.030.
Hashemi, S.M., Hasani, S., Jahanbani Ardakani, K., Davar, F., The effect of simultaneous addition of ethylene glycol and agarose on the structural and magnetic properties of CoFe2O4 nanoparticles prepared by the sol-gel auto-combustion method. J. Magn. Magn. Mater., 492, 2019, 165714, 10.1016/j.jmmm.2019.165714.
Bhagwat, V.R., Humbe, A.V., More, S.D., Jadhav, K.M., Sol-gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: Different fuels approach. Mater. Sci. Eng., B, 248, 2019, 114388, 10.1016/j.mseb.2019.114388.
Millot, N., Le Gallet, S., Aymes, D., Bernard, F., Grin, Y., Spark plasma sintering of cobalt ferrite nanopowders prepared by coprecipitation and hydrothermal synthesis. J. Eur. Ceram. Soc. 27 (2007), 921–926.
Mathew, D.S., Juang, R.S., An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129 (2007), 51–65.
Goodarz Naseri, M., Saion, E.B., Abbastabar Ahangar, H., Shaari, A.H., Hashim, M., Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J. Nanomater., 2010, 2010.
Diodati, S., Pandolfo, L., Caneschi, A., Gialanella, S., Gross, S., Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Res. 7 (2014), 1027–1042.
Goswami, P.P., Choudhury, H.A., Sonochemical Synthesis of Cobalt Ferrite Nanoparticles. Int. J. Chem. Eng., 2013.
Yang, H., Zhang, X., Ao, W., Qiu, G., Formation of NiFe2O4 nanoparticles by mechanochemical reaction. Mater. Res. Bull. 39 (2004), 833–837.
De Freitas, M.R., De Gouveia, G.L., De Oliveira, J.A., Herta, R., Aliaga, G., Microwave assisted combustion synthesis and characterization of nanocrystalline nickel-doped cobalt ferrites. Mater. Res. 19 (2016), 27–32.
Solano, E., Perez-Mirabet, L., Martinez-Julian, F., Guzmán, R., Arbiol, J., Puig, T., Obradors, X., Yañez, R., Pomar, A., Ricart, S., Ros, J., Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe2O4 spinel magnetic nanoparticles. J. Nanopart. Res., 14, 2012.
Abraime, B., Ait Tamerd, M., Mahmoud, A., Boschini, F., Benyoussef, A., Hamedoun, M., Xiao, Y., El Kenz, A., Mounkachi, O., Experimental and theoretical investigation of SrFe12O19 nanopowder for permanent magnet application. Ceram. Int., 43, 2017.
Safi, R., Ghasemi, A., Shoja-Razavi, R., A novel approach for enhancement of coercivity in magnetic cobalt ferrite nanocrystal without applying post annealing. Ceram. Int. 42 (2016), 17357–17365.
Rao, K.S., Choudary, G.S.V.R.K., Rao, K.H., Sujatha, C., Structural and magnetic properties of ultrafine CoFe2O4 nanoparticles. Proc. Mater. Sci. 10 (2015), 19–27.
Hemeda, O.M., Amer, M.A., Aboul-Enein, S., Ahmed, M.A., Effect of sintering on X-ray and IR spectral behaviour of the MnAlxFe2-xO4 ferrite system. Phys. Status Solidi (A) Appl. Res. 156 (1996), 29–38.
Trukhanov, S.V., Trukhanov, A.V., Stepin, S.G., Szymczak, H., Botez, C.E., Effect of the size factor on the magnetic properties of manganite La 0.50Ba0.50MnO3. Phys. Solid State 50 (2008), 886–893, 10.1134/S1063783408050144.
Trukhanov, S.V., Investigation of stability of ordered manganites. J. Exp. Theor. Phys. 101 (2005), 513–520, 10.1134/1.2103220.
Munjal, S., Khare, N., Nehate, C., Koul, V., Water dispersible CoFe2O4 nanoparticles with improved colloidal stability for biomedical applications. J. Magn. Magn. Mater. 404 (2016), 166–169.
Iqbal, M.J., Ashiq, M.N., Hernández-Gómez, P., Muñoz, J.M.M., Cabrera, C.T., Influence of annealing temperature and doping rate on the magnetic properties of Zr-Mn substituted Sr-hexaferrite nanoparticles. J. Alloy. Compd. 500 (2010), 113–116.
Laokul, P., Arthan, S., Maensiri, S., Swatsitang, E., Magnetic and optical properties of CoFe2O4 nanoparticles synthesized by reverse micelle microemulsion method. J. Supercond. Novel Magn. 28 (2015), 2483–2489.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.