Bhattacharya, Atri ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
Esmaili, Arman
Sergio, Palomares-Ruiz
Sarcevic, Ina
Language :
English
Title :
Update on decaying and annihilating heavy dark matter with the 6-year IceCube HESE data
IceCube collaboration, 2013 Evidence for high-energy extraterrestrial neutrinos at the IceCube detector, https://doi.org/10.1126/science.1242856 Science 342 1242856 [1311.5238]
IceCube collaboration, 2014 Observation of high-energy astrophysical neutrinos in three years of IceCube data, https://doi.org/10.1103/PhysRevLett.113.101101 Phys. Rev. Lett. 113 101101 [1405.5303]
IceCube collaboration, 2015 Evidence for astrophysical muon neutrinos from the northern sky with IceCube, https://doi.org/10.1103/PhysRevLett.115.081102 Phys. Rev. Lett. 115 081102 [1507.04005]
IceCube collaboration, Observation of astrophysical neutrinos in four years of IceCube data, https://doi.org/10.22323/1.236.1081 PoS(ICRC2015)1081
IceCube collaboration, 2016 Observation and characterization of a cosmic muon neutrino flux from the northern hemisphere using six years of IceCube data, https://doi.org/10.3847/0004-637X/833/1/3 Astrophys. J. 833 3 [1607.08006]
IceCube collaboration, Observation of astrophysical neutrinos in six years of IceCube data, https://doi.org/10.22323/1.301.098 PoS(ICRC2017)981
IceCube collaboration, A measurement of the diffuse astrophysical muon neutrino flux using eight years of IceCube data, https://doi.org/10.22323/1.301.1005 PoS(ICRC2017)1005
IceCube collaboration, Results on astrophysical neutrinos using 7.5 years of high-energy events with contained vertices, poster at Neutrino 2018, Heidelberg, Germany, 4-9 June 2018
R. Laha, J.F. Beacom, B. Dasgupta, S. Horiuchi and K. Murase, 2013 Demystifying the PeV cascades in IceCube: less (energy) is more (events), https://doi.org/10.1103/PhysRevD.88.043009 Phys. Rev. D 88 043009 [1306.2309]
F. Halzen, 2014 The highest energy neutrinos: first evidence for cosmic origin, https://doi.org/10.1393/ncc/i2014-11772-8 Nuovo Cim. C 037 117 [1311.6350]
E. Waxman, IceCube's neutrinos: the beginning of extra-galactic neutrino astrophysics?, in Proceedings, 9th Rencontres du Vietnam: windows on the universe, Quy Nhon, Vietnam, 11-17 August 2013, pg. 161 [1312.0558]
L.A. Anchordoqui et al., 2014 Cosmic neutrino pevatrons: a brand new pathway to astronomy, astrophysics and particle physics, https://doi.org/10.1016/j.jheap.2014.01.001 JHEAp 1-21 [1312.6587]
K. Murase, 2015 On the origin of high-energy cosmic neutrinos, https://doi.org/10.1063/1.4915555 AIP Conf. Proc. 1666040006 [1410.3680]
P. Mészáros, 2017 Astrophysical sources of high energy neutrinos in the IceCube era, https://doi.org/10.1146/annurev-nucl-101916-123304 Ann. Rev. Nucl. Part. Sci. 67 45 [1708.03577]
M. Ahlers and F. Halzen, 2018 Opening a new window onto the universe with IceCube, https://doi.org/10.1016/j.ppnp.2018.05.001 Prog. Part. Nucl. Phys. 102 73 [1805.11112]
C.-Y. Chen, P.S. Bhupal Dev and A. Soni, 2015 Two-component flux explanation for the high energy neutrino events at IceCube, https://doi.org/10.1103/PhysRevD.92.073001 Phys. Rev. D 92 073001 [1411.5658]
IceCube collaboration, 2015 A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube, https://doi.org/10.1088/0004-637X/809/1/98 Astrophys. J. 809 98 [1507.03991]
A. Palladino and F. Vissani, 2016 Extragalactic plus galactic model for IceCube neutrino events, https://doi.org/10.3847/0004-637X/826/2/185 Astrophys. J. 826 185 [1601.06678]
A.C. Vincent, S. Palomares-Ruiz and O. Mena, 2016 Analysis of the 4-year IceCube high-energy starting events, https://doi.org/10.1103/PhysRevD.94.023009 Phys. Rev. D 94 023009 [1605.01556]
A. Palladino, M. Spurio and F. Vissani, 2016 On the IceCube spectral anomaly J. Cosmol. Astropart. Phys. 2016 12 045 [1610.07015]
A. Palladino, C. Mascaretti and F. Vissani, 2017 On the compatibility of the IceCube results with a universal neutrino spectrum, https://doi.org/10.1140/epjc/s10052-017-5273-z Eur. Phys. J. C 77 684 [1708.02094]
W. Winter, 2014 Describing the observed cosmic neutrinos by interactions of nuclei with matter, https://doi.org/10.1103/PhysRevD.90.103003 Phys. Rev. D 90 103003 [1407.7536]
L.A. Anchordoqui et al., 2014 End of the cosmic neutrino energy spectrum, https://doi.org/10.1016/j.physletb.2014.10.037 Phys. Lett. B 739 99 [1404.0622]
S. Palomares-Ruiz, A.C. Vincent and O. Mena, 2015 Spectral analysis of the high-energy IceCube neutrinos, https://doi.org/10.1103/PhysRevD.91.103008 Phys. Rev. D 91 103008 [1502.02649]
IceCube collaboration, The IceCube neutrino observatory - mdash;contributions to ICRC 2015 part II: atmospheric and astrophysical diffuse neutrino searches of all flavors, in Proceedings, 34th International Cosmic Ray Conference (ICRC 2015), The Hague, The Netherlands, 30 July-6 August 2015 [1510.05223]
L.A. Anchordoqui, M.M. Block, L. Durand, P. Ha, J.F. Soriano and T.J. Weiler, 2017 Evidence for a break in the spectrum of astrophysical neutrinos, https://doi.org/10.1103/PhysRevD.95.083009 Phys. Rev. D 95 083009 [1611.07905]
M. Ahlers and K. Murase, 2014 Probing the galactic origin of the IceCube excess with gamma-rays, https://doi.org/10.1103/PhysRevD.90.023010 Phys. Rev. D 90 023010 [1309.4077]
L.A. Anchordoqui, H. Goldberg, T.C. Paul, L.H.M. da Silva and B.J. Vlcek, 2014 Estimating the contribution of galactic sources to the diffuse neutrino flux, https://doi.org/10.1103/PhysRevD.90.123010 Phys. Rev. D 90 123010 [1410.0348]
S. Troitsky, 2015 Search for galactic disk and halo components in the arrival directions of high-energy astrophysical neutrinos, https://doi.org/10.1134/S0021364015240133 JETP Lett. 102785 [1511.01708]
S. Troitsky, 2015 Pisma Zh. Eksp. Teor. Fiz. 102 899
M.D. Kistler, On TeV gamma rays and the search for galactic neutrinos, [1511.05199]
P.B. Denton, D. Marfatia and T.J. Weiler, 2017 The galactic contribution to IceCube's astrophysical neutrino flux J. Cosmol. Astropart. Phys. 2017 08 033 [1703.09721]
ANTARES collaboration, 2017 New constraints on all flavor galactic diffuse neutrino emission with the ANTARES telescope, https://doi.org/10.1103/PhysRevD.96.062001 Phys. Rev. D 96 062001 [1705.00497]
IceCube collaboration, 2017 Constraints on galactic neutrino emission with seven years of IceCube data, https://doi.org/10.3847/1538-4357/aa8dfb Astrophys. J. 849 67 [1707.03416]
IceCube collaboration Using all-flavor and all-sky event selections by IceCube to search for neutrino emission from the galactic plane, https://doi.org/10.22323/1.301.0995 PoS(ICRC2017)995 - ref-separator -
G. Pagliaroli and F.L. Villante, 2018 A multi-messenger study of the total galactic high-energy neutrino emission J. Cosmol. Astropart. Phys. 2018 08 035 [1710.01040]
A. Neronov, M. Kachelrieß and D.V. Semikoz, 2018 Multimessenger gamma-ray counterpart of the IceCube neutrino signal, https://doi.org/10.1103/PhysRevD.98.023004 Phys. Rev. D 98 023004 [1802.09983]
A. Neronov and D. Semikoz, 2016 Galactic and extragalactic contributions to the astrophysical muon neutrino signal, https://doi.org/10.1103/PhysRevD.93.123002 Phys. Rev. D 93 123002 [1603.06733]
Y. Bai, R. Lu and J. Salvadó, 2016 Geometric compatibility of IceCube TeV-PeV neutrino excess and its galactic dark matter origin J. High Energy Phys. JHEP01(2016)161 [1311.5864]
A. Esmaili, S.K. Kang and P.D. Serpico, 2014 IceCube events and decaying dark matter: hints and constraints J. Cosmol. Astropart. Phys. 2014 12 054 [1410.5979]
M. Chianese, G. Miele, S. Morisi and E. Vitagliano, 2016 Low energy IceCube data and a possible dark matter related excess, https://doi.org/10.1016/j.physletb.2016.03.084 Phys. Lett. B 757 251 [1601.02934]
B. Feldstein, A. Kusenko, S. Matsumoto and T.T. Yanagida, 2013 Neutrinos at IceCube from heavy decaying dark matter, https://doi.org/10.1103/PhysRevD.88.015004 Phys. Rev. D 88 015004 [1303.7320]
A. Esmaili and P.D. Serpico, 2013 Are IceCube neutrinos unveiling PeV-scale decaying dark matter? J. Cosmol. Astropart. Phys. 2013 11 054 [1308.1105]
Y. Ema, R. Jinno and T. Moroi, 2014 Cosmic-ray neutrinos from the decay of long-lived particle and the recent IceCube result, https://doi.org/10.1016/j.physletb.2014.04.021 Phys. Lett. B 733 120 [1312.3501]
A. Bhattacharya, M.H. Reno and I. Sarcevic, 2014 Reconciling neutrino flux from heavy dark matter decay and recent events at IceCube J. High Energy Phys. JHEP06(2014)110 [1403.1862]
J. Zavala, 2014 Galactic PeV neutrinos from dark matter annihilation, https://doi.org/10.1103/PhysRevD.89.123516 Phys. Rev. D 89 123516 [1404.2932]
T. Higaki, R. Kitano and R. Sato, 2014 Neutrinoful universe J. High Energy Phys. JHEP07(2014)044 [1405.0013]
Y. Ema, R. Jinno and T. Moroi, 2014 Cosmological implications of high-energy neutrino emission from the decay of long-lived particle J. High Energy Phys. JHEP10(2014)150 [1408.1745]
C. Rott, K. Kohri and S.C. Park, 2015 Superheavy dark matter and IceCube neutrino signals: bounds on decaying dark matter, https://doi.org/10.1103/PhysRevD.92.023529 Phys. Rev. D 92 023529 [1408.4575]
C.S. Fong, H. Minakata, B. Panes and R. Zukanovich Funchal, 2015 Possible interpretations of IceCube high-energy neutrino events J. High Energy Phys. JHEP02(2015)189 [1411.5318]
Y. Daikoku and H. Okada, 2015 PeV scale right handed neutrino dark matter in S4 flavor symmetric extra U(1) model, https://doi.org/10.1103/PhysRevD.91.075009 Phys. Rev. D 91 075009 [1502.07032]
K. Murase, R. Laha, S. Ando and M. Ahlers, 2015 Testing the dark matter scenario for PeV neutrinos observed in IceCube, https://doi.org/10.1103/PhysRevLett.115.071301 Phys. Rev. Lett. 115 071301 [1503.04663]
A. Esmaili and P.D. Serpico, 2015 Gamma-ray bounds from EAS detectors and heavy decaying dark matter constraints J. Cosmol. Astropart. Phys. 2015 10 014 [1505.06486]
C. El Aisati, M. Gustafsson and T. Hambye, 2015 New search for monochromatic neutrinos from dark matter decay, https://doi.org/10.1103/PhysRevD.92.123515 Phys. Rev. D 92 123515 [1506.02657]
S.B. Roland, B. Shakya and J.D. Wells, 2015 PeV neutrinos and a 3.5 keV X-ray line from a PeV-scale supersymmetric neutrino sector, https://doi.org/10.1103/PhysRevD.92.095018 Phys. Rev. D 92 095018 [1506.08195]
L.A. Anchordoqui et al., 2015 IceCube neutrinos, decaying dark matter and the Hubble constant, https://doi.org/10.1103/PhysRevD.92.061301 Phys. Rev. D 92 061301 [Erratum ibid D 94 (2016) 069901] [1506.08788]
S.M. Boucenna et al., 2015 Decaying leptophilic dark matter at IceCube J. Cosmol. Astropart. Phys. 2015 12 055 [1507.01000]
P. Ko and Y. Tang, 2015 IceCube events from heavy DM decays through the right-handed neutrino portal, https://doi.org/10.1016/j.physletb.2015.10.021 Phys. Lett. B 751 81 [1508.02500]
A. Esmaili and P. Serpico, Interpreting the IceCube events by decaying dark matter, https://doi.org/10.22323/1.268.0047 PoS(DSU2015)047
A. Esmaili, A. Palladino and F. Vissani, 2016 A discussion of IceCube neutrino events, circa 2015, https://doi.org/10.1051/epjconf/201611611002 EPJ Web Conf. 116 11002
P.S.B. Dev, D.K. Ghosh and W. Rodejohann, 2016 R-parity violating supersymmetry at IceCube, https://doi.org/10.1016/j.physletb.2016.08.066 Phys. Lett. B 762 116 [1605.09743]
M. Re Fiorentin, V. Niro and N. Fornengo, 2016 A consistent model for leptogenesis, dark matter and the IceCube signal J. High Energy Phys. JHEP11(2016)022 [1606.04445]
P.S.B. Dev, D. Kazanas, R.N. Mohapatra, V.L. Teplitz and Y. Zhang, 2016 Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube J. Cosmol. Astropart. Phys. 2016 08 034 [1606.04517]
P. Di Bari, P.O. Ludl and S. Palomares-Ruiz, 2016 Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal J. Cosmol. Astropart. Phys. 2016 11 044 [1606.06238]
M. Chianese and A. Merle, 2017 A consistent theory of decaying dark matter connecting IceCube to the Sesame street J. Cosmol. Astropart. Phys. 2017 04 017 [1607.05283]
M. Chianese, G. Miele and S. Morisi, 2017 Dark matter interpretation of low energy IceCube MESE excess J. Cosmol. Astropart. Phys. 2017 01 007 [1610.04612]
M. Yu. Kuznetsov, 2017 Hadronically decaying heavy dark matter and high-energy neutrino limits, https://doi.org/10.1134/S0021364017090028 JETP Lett. 105561 [1611.08684]
T. Cohen, K. Murase, N.L. Rodd, B.R. Safdi and Y. Soreq, 2017 γ-ray constraints on decaying dark matter and implications for IceCube, https://doi.org/10.1103/PhysRevLett.119.021102 Phys. Rev. Lett. 119 021102 [1612.05638]
D. Borah, A. Dasgupta, U.K. Dey, S. Patra and G. Tomar, 2017 Multi-component fermionic dark matter and IceCube PeV scale neutrinos in left-right model with gauge unification J. High Energy Phys. JHEP09(2017)005 [1704.04138]
N. Hiroshima, R. Kitano, K. Kohri and K. Murase, 2018 High-energy neutrinos from multibody decaying dark matter, https://doi.org/10.1103/PhysRevD.97.023006 Phys. Rev. D 97 023006 [1705.04419]
A. Bhattacharya, A. Esmaili, S. Palomares-Ruiz and I. Sarcevic, 2017 Probing decaying heavy dark matter with the 4-year IceCube HESE data J. Cosmol. Astropart. Phys. 2017 07 027 [1706.05746]
G.K. Chakravarty, N. Khan and S. Mohanty, Dark matter and inflation in PeV scale SUSY, [1707.03853]
M. Chianese, G. Miele and S. Morisi, 2017 Interpreting IceCube 6-year HESE data as an evidence for hundred TeV decaying dark matter, https://doi.org/10.1016/j.physletb.2017.09.016 Phys. Lett. B 773 591 [1707.05241]
M. Dhuria and V. Rentala, 2018 PeV scale supersymmetry breaking and the IceCube neutrino flux J. High Energy Phys. JHEP09(2018)004 [1712.07138]
IceCube collaboration, 2018 Search for neutrinos from decaying dark matter with IceCube, https://doi.org/10.1140/epjc/s10052-018-6273-3 Eur. Phys. J. C 78 831 [1804.03848]
Y. Sui and P.S. Bhupal Dev, 2018 A combined astrophysical and dark matter interpretation of the IceCube HESE and throughgoing muon events J. Cosmol. Astropart. Phys. 2018 07 020 [1804.04919]
M. Chianese, G. Miele, S. Morisi and E. Peinado, 2018 Neutrinophilic dark matter in the epoch of IceCube and Fermi-LAT J. Cosmol. Astropart. Phys. 2018 12 016 [1808.02486]
C. Blanco and D. Hooper, 2019 Constraints on decaying dark matter from the isotropic gamma-ray background J. Cosmol. Astropart. Phys. 2019 03 019 [1811.05988]
IceCube collaboration, 2015 Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube, https://doi.org/10.1103/PhysRevD.91.022001 Phys. Rev. D 91 022001 [1410.1749]
IceCube collaboration, New measurements with high-energy neutrinos in IceCube, poster at Neutrino 2018, Heidelberg, Germany, 4-9 June 2018
K. Griest and M. Kamionkowski, 1990 Unitarity limits on the mass and radius of dark matter particles, https://doi.org/10.1103/PhysRevLett.64.615 Phys. Rev. Lett. 64 615
L. Hui, 2001 Unitarity bounds and the cuspy halo problem, https://doi.org/10.1103/PhysRevLett.86.3467 Phys. Rev. Lett. 86 3467 [astro-ph/0102349]
G.J. Feldman and R.D. Cousins, 1998 A unified approach to the classical statistical analysis of small signals, https://doi.org/10.1103/PhysRevD.57.3873 Phys. Rev. D 57 3873 [https://arxiv.org/abs/physics/9711021 physics/9711021]
Fermi-LAT collaboration, 2015 The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV, https://doi.org/10.1088/0004-637X/799/1/86 Astrophys. J. 799 86 [1410.3696]
M. Fornasa and M.A. Sánchez-Conde, 2015 The nature of the diffuse gamma-ray background, https://doi.org/10.1016/j.physrep.2015.09.002 Phys. Rept. 598 1 [1502.02866]
K. Murase, M. Ahlers and B.C. Lacki, 2013 Testing the hadronuclear origin of PeV neutrinos observed with IceCube, https://doi.org/10.1103/PhysRevD.88.121301 Phys. Rev. D 88 121301 [1306.3417]
J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, 2005 Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, https://doi.org/10.1103/PhysRevD.71.063528 Phys. Rev. D 71 063528 [hep-ph/0412403]
S. Profumo, 2005 TeV gamma-rays and the largest masses and annihilation cross sections of neutralino dark matter, https://doi.org/10.1103/PhysRevD.72.103521 Phys. Rev. D 72 103521 [astro-ph/0508628]
M. Lattanzi and J.I. Silk, 2009 Can the WIMP annihilation boost factor be boosted by the Sommerfeld enhancement?, https://doi.org/10.1103/PhysRevD.79.083523 Phys. Rev. D 79 083523 [0812.0360]
J.L. Feng, M. Kaplinghat and H.-B. Yu, 2010 Sommerfeld enhancements for thermal relic dark matter, https://doi.org/10.1103/PhysRevD.82.083525 Phys. Rev. D 82 083525 [1005.4678]
J.F. Navarro, C.S. Frenk and S.D.M. White, 1996 The structure of cold dark matter halos, https://doi.org/10.1086/177173 Astrophys. J. 462 563 [astro-ph/9508025]
J.F. Navarro, C.S. Frenk and S.D.M. White, 1997 A universal density profile from hierarchical clustering, https://doi.org/10.1086/304888 Astrophys. J. 490 493 [astro-ph/9611107]
V. Springel et al., 2008 The Aquarius project: the subhalos of galactic halos, https://doi.org/10.1111/j.1365-2966.2008.14066.x Mon. Not. Roy. Astron. Soc. 391 1685 [0809.0898]
W.A. Hellwing et al., 2016 The Copernicus complexio: a high-resolution view of the small-scale universe, https://doi.org/10.1093/mnras/stw214 Mon. Not. Roy. Astron. Soc. 457 3492 [1505.06436]
A. Rodríguez-Puebla, P. Behroozi, J. Primack, A. Klypin, C. Lee and D. Hellinger, 2016 Halo and subhalo demographics with Planck cosmological parameters: Bolshoi-Planck and MultiDark-Planck simulations, https://doi.org/10.1093/mnras/stw1705 Mon. Not. Roy. Astron. Soc. 462 893 [1602.04813]
J. Diemand et al., 2008 Clumps and streams in the local dark matter distribution, https://doi.org/10.1038/nature07153 Nature 454 735 [0805.1244]
L. Pieri, J. Lavalle, G. Bertone and E. Branchini, 2011 Implications of high-resolution simulations on indirect dark matter searches, https://doi.org/10.1103/PhysRevD.83.023518 Phys. Rev. D 83 023518 [0908.0195]
Á Moliné, M.A. Sánchez-Conde, S. Palomares-Ruiz and F. Prada, 2017 Characterization of subhalo structural properties and implications for dark matter annihilation signals, https://doi.org/10.1093/mnras/stx026 Mon. Not. Roy. Astron. Soc. 466 4974 [1603.04057]
P.D. Serpico, E. Sefusatti, M. Gustafsson and G. Zaharijas, 2012 Extragalactic gamma-ray signal from dark matter annihilation: a power spectrum based computation, https://doi.org/10.1111/j.1745-3933.2011.01212.x Mon. Not. Roy. Astron. Soc. 421 L87 [1109.0095]
E. Sefusatti, G. Zaharijas, P.D. Serpico, D. Theurel and M. Gustafsson, 2014 Extragalactic gamma-ray signal from dark matter annihilation: an appraisal, https://doi.org/10.1093/mnras/stu686 Mon. Not. Roy. Astron. Soc. 441 1861 [1401.2117]
A. Cooray and R.K. Sheth, 2002 Halo models of large scale structure, https://doi.org/10.1016/S0370-1573(02)00276-4 Phys. Rept. 372 1 [astro-ph/0206508]
L. Bergstrom, J. Edsjo and P. Ullio, 2001 Spectral gamma-ray signatures of cosmological dark matter annihilation, https://doi.org/10.1103/PhysRevLett.87.251301 Phys. Rev. Lett. 87 251301 [astro-ph/0105048]
P. Ullio, L. Bergstrom, J. Edsjo and C.G. Lacey, 2002 Cosmological dark matter annihilations into gamma-rays - mdash;a closer look, https://doi.org/10.1103/PhysRevD.66.123502 Phys. Rev. D 66 123502 [astro-ph/0207125]
J.E. Taylor and J. Silk, 2003 The clumpiness of cold dark matter: implications for the annihilation signal, https://doi.org/10.1046/j.1365-8711.2003.06201.x Mon. Not. Roy. Astron. Soc. 339 505 [astro-ph/0207299]
Á. Moliné, A. Ibarra and S. Palomares-Ruiz, 2015 Future sensitivity of neutrino telescopes to dark matter annihilations from the cosmic diffuse neutrino signal J. Cosmol. Astropart. Phys. 2015 06 005 [1412.4308]