[en] Interconnected macroporous imidazolium-based mono- liths are produced via the modified Radziszewski multicomponent reaction (MCR) applied to triamines under high internal phase emulsion (HIPE) conditions. This straightforward one-pot synthesis combines the efficiency and versatility ofMCRs with the ease of implementation of the emulsion templating polymerization process. The characterization of the chemical structure and morphology of the resulting materials confirms the formation of the expected macroporous poly(ionic liquid)s (PILs) networks. The promising catalytic activity and recyclability of these porous PIL monoliths are illustrated for the transesterification reaction and the decarboxylation of caffeic acid. In these cases, almost complete conversion is reached while benefiting from the advantages associated with a heterogeneous catalyst.
Research Center/Unit :
Center for Education and Research on Macromolecules Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Stiernet, Pierre ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Aqil, Abdelhafid ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Zhu, Xiaomin; RWTH Aachen University, Institut für technische und makromolekulare Chemie, Germany
Debuigne, Antoine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Language :
English
Title :
Multicomponent Radziszewski emulsion polymerization towards macroporous poly(ionic liquid)s catalysts
Publication date :
21 January 2020
Journal title :
ACS Macro Letters
eISSN :
2161-1653
Publisher :
American Chemical Society, United States - District of Columbia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Kakuchi, R. Multicomponent Reactions in Polymer Synthesis. Angew. Chem., Int. Ed. 2014, 53 (1), 46-48, 10.1002/anie.201305538
Yang, B.; Zhao, Y.; Wei, Y.; Fu, C.; Tao, L. The Ugi Reaction in Polymer Chemistry: Syntheses, Applications and Perspectives. Polym. Chem. 2015, 6 (48), 8233-8239, 10.1039/C5PY01398D
Rudick, J. G. Innovative Macromolecular Syntheses via Isocyanide Multicomponent Reactions. J. Polym. Sci., Part A: Polym. Chem. 2013, 51 (19), 3985-3991, 10.1002/pola.26808
Theato, P. Multi-Component and Sequential Reactions in Polymer Synthesis; Springer International Publishing: Hamburg, 2015.
Dömling, A.; Wang, W.; Wang, K. Chemistry and Biology Of Multicomponent Reactions. Chem. Rev. 2012, 112 (6), 3083-3135, 10.1021/cr100233r
Zhang, J.; Wu, Y.-H.; Wang, J.-C.; Du, F.-S.; Li, Z.-C. Functional Poly(Ester-Amide)s with Tertiary Ester Linkages via the Passerini Multicomponent Polymerization of a Dicarboxylic Acid and a Diisocyanide with Different Electron-Deficient Ketones. Macromolecules 2018, 51 (15), 5842-5851, 10.1021/acs.macromol.8b01168
Cui, Y.; Zhang, M.; Du, F.-S.; Li, Z.-C. Facile Synthesis of H2O2-Cleavable Poly(Ester-Amide)s by Passerini Multicomponent Polymerization. ACS Macro Lett. 2017, 6 (1), 11-15, 10.1021/acsmacrolett.6b00833
Zhang, J.; Zhang, M.; Du, F.-S.; Li, Z.-C. Synthesis of Functional Polycaprolactones via Passerini Multicomponent Polymerization of 6-Oxohexanoic Acid and Isocyanides. Macromolecules 2016, 49 (7), 2592-2600, 10.1021/acs.macromol.6b00096
Sehlinger, A.; Schneider, R.; Meier, M. A. R. Passerini Addition Polymerization of an AB-Type Monomer-A Convenient Route to Versatile Polyesters. Eur. Polym. J. 2014, 50, 150-157, 10.1016/j.eurpolymj.2013.10.019
Wang, Y.-Z.; Deng, X.-X.; Li, L.; Li, Z.-L.; Du, F.-S.; Li, Z.-C. One-Pot Synthesis of Polyamides with Various Functional Side Groups via Passerini Reaction. Polym. Chem. 2013, 4 (3), 444-448, 10.1039/C2PY20927F
Deng, X.-X.; Li, L.; Li, Z.-L.; Lv, A.; Du, F.-S.; Li, Z.-C. Sequence Regulated Poly(Ester-Amide)s Based on Passerini Reaction. ACS Macro Lett. 2012, 1 (11), 1300-1303, 10.1021/mz300456p
Stiernet, P.; Lecomte, P.; De Winter, J.; Debuigne, A. Ugi Three-Component Polymerization Toward Poly(α-Amino Amide)S. ACS Macro Lett. 2019, 8 (4), 427-434, 10.1021/acsmacrolett.9b00182
Tao, Y.; Wang, Z.; Tao, Y. Polypeptoids Synthesis Based on Ugi Reaction: Advances and Perspectives. Biopolymers 2019, 110 (6), 1-11, 10.1002/bip.23288
Schade, O. R.; Dannecker, P.-K.; Kalz, K. F.; Steinbach, D.; Meier, M. A. R.; Grunwaldt, J.-D. Direct Catalytic Route to Biomass-Derived 2,5-Furandicarboxylic Acid and Its Use as Monomer in a Multicomponent Polymerization. ACS Omega 2019, 4 (16), 16972-16979, 10.1021/acsomega.9b02373
Hartweg, M.; Edwards-Gayle, C. J. C.; Radvar, E.; Collis, D.; Reza, M.; Kaupp, M.; Steinkoenig, J.; Ruokolainen, J.; Rambo, R.; Barner-Kowollik, C.; Hamley, I. W.; Azevedo, H. S.; Becer, C. R. Ugi Multicomponent Reaction to Prepare Peptide-Peptoid Hybrid Structures with Diverse Chemical Functionalities. Polym. Chem. 2018, 9 (4), 482-489, 10.1039/C7PY01953J
Koyama, Y.; Ihsan, A. B.; Taira, T.; Imura, T. Fluorinated Polymer Surfactants Bearing an Alternating Peptide Skeleton Prepared by Three-Component Polycondensation. RSC Adv. 2018, 8 (14), 7509-7513, 10.1039/C8RA00581H
Tao, Y.; Wang, S.; Zhang, X.; Wang, Z.; Tao, Y.; Wang, X. Synthesis and Properties of Alternating Polypeptoids and Polyampholytes as Protein-Resistant Polymers. Biomacromolecules 2018, 19 (3), 936-942, 10.1021/acs.biomac.7b01719
Al Samad, A.; De Winter, J.; Gerbaux, P.; Jérôme, C.; Debuigne, A. Unique Alternating Peptide-Peptoid Copolymers from Dipeptides via a Ugi Reaction in Water. Chem. Commun. 2017, 53 (90), 12240-12243, 10.1039/C7CC06463B
Koyama, Y.; Gudeangadi, P. G. One-Pot Synthesis of Alternating Peptides Exploiting a New Polymerization Technique Based on Ugi's 4CC Reaction. Chem. Commun. 2017, 53 (27), 3846-3849, 10.1039/C6CC09379E
Hartweg, M.; Becer, C. R. Direct Polymerization of Levulinic Acid via Ugi Multicomponent Reaction. Green Chem. 2016, 18 (11), 3272-3277, 10.1039/C6GC00372A
Zhang, X.; Wang, S.; Liu, J.; Xie, Z.; Luan, S.; Xiao, C.; Tao, Y.; Wang, X. Ugi Reaction of Natural Amino Acids: A General Route toward Facile Synthesis of Polypeptoids for Bioapplications. ACS Macro Lett. 2016, 5 (9), 1049-1054, 10.1021/acsmacrolett.6b00530
Gangloff, N.; Nahm, D.; Döring, L.; Kuckling, D.; Luxenhofer, R. Polymerization via the Ugi-Reaction Using Aromatic Monomers. J. Polym. Sci., Part A: Polym. Chem. 2015, 53 (14), 1680-1686, 10.1002/pola.27610
Sehlinger, A.; Dannecker, P.-K.; Kreye, O.; Meier, M. A. R. Diversely Substituted Polyamides: Macromolecular Design Using the Ugi Four-Component Reaction. Macromolecules 2014, 47 (9), 2774-2783, 10.1021/ma500504w
Sehlinger, A.; Schneider, R.; Meier, M. A. R. Ugi Reactions with CO2: Access to Functionalized Polyurethanes, Polycarbonates, Polyamides, and Polyhydantoins. Macromol. Rapid Commun. 2014, 35 (21), 1866-1871, 10.1002/marc.201400385
Boukis, A. C.; Llevot, A.; Meier, M. A. R. High Glass Transition Temperature Renewable Polymers via Biginelli Multicomponent Polymerization. Macromol. Rapid Commun. 2016, 37 (7), 643-649, 10.1002/marc.201500717
Zhao, Y.; Wu, H.; Wang, Z.; Wei, Y.; Wang, Z.; Tao, L. Training the Old Dog New Tricks: The Applications of the Biginelli Reaction in Polymer Chemistry. Sci. China: Chem. 2016, 59 (12), 1541-1547, 10.1007/s11426-016-0219-4
Zhao, Y.; Yu, Y.; Zhang, Y.; Wang, X.; Yang, B.; Zhang, Y.; Zhang, Q.; Fu, C.; Wei, Y.; Tao, L. From Drug to Adhesive: A New Application of Poly(Dihydropyrimidin-2(1H)-One)s via the Biginelli Polycondensation. Polym. Chem. 2015, 6 (27), 4940-4945, 10.1039/C5PY00684H
Zhao, Y.; Wu, H.; Zhang, Y.; Wang, X.; Yang, B.; Zhang, Q.; Ren, X.; Fu, C.; Wei, Y.; Wang, Z.; Wang, Y.; Tao, L. Postpolymerization Modification of Poly(Dihydropyrimidin-2(1H)-Thione)s via the Thiourea-Haloalkane Reaction to Prepare Functional Polymers. ACS Macro Lett. 2015, 4 (8), 843-847, 10.1021/acsmacrolett.5b00428
Wu, H.; Fu, C.; Zhao, Y.; Yang, B.; Wei, Y.; Wang, Z.; Tao, L. Multicomponent Copolycondensates via the Simultaneous Hantzsch and Biginelli Reactions. ACS Macro Lett. 2015, 4 (11), 1189-1193, 10.1021/acsmacrolett.5b00637
Moldenhauer, F.; Kakuchi, R.; Theato, P. Synthesis of Polymers via Kabachnik-Fields Polycondensation. ACS Macro Lett. 2016, 5 (1), 10-13, 10.1021/acsmacrolett.5b00720
Bachler, P. R.; Schulz, M. D.; Sparks, C. A.; Wagener, K. B.; Sumerlin, B. S. Aminobisphosphonate Polymers via RAFT and a Multicomponent Kabachnik-Fields Reaction. Macromol. Rapid Commun. 2015, 36 (9), 828-833, 10.1002/marc.201500060
Zhang, Y.; Zhao, Y.; Yang, B.; Zhu, C.; Wei, Y.; Tao, L. One Pot' Synthesis of Well-Defined Poly(Aminophosphonate)s: Time for the Kabachnik-Fields Reaction on the Stage of Polymer Chemistry. Polym. Chem. 2014, 5 (6), 1857-1862, 10.1039/C3PY01486J
Wu, H.; Wang, Z.; Tao, L. The Hantzsch Reaction in Polymer Chemistry: Synthesis and Tentative Application. Polym. Chem. 2017, 8 (47), 7290-7296, 10.1039/C7PY01718A
Saxer, S.; Marestin, C.; Mercier, R.; Dupuy, J. The Multicomponent Debus-Radziszewski Reaction in Macromolecular Chemistry. Polym. Chem. 2018, 9 (15), 1927-1933, 10.1039/C8PY00173A
Esposito, D.; Kirchhecker, S.; Antonietti, M. A Sustainable Route towards Imidazolium Building Blocks Based on Biomass Molecules. Chem.-Eur. J. 2013, 19 (45), 15097-15100, 10.1002/chem.201302806
Zhao, X.; Guo, S.; Li, H.; Liu, J.; Liu, X.; Song, H. In Situ Synthesis of Imidazolium-Crosslinked Ionogels via Debus-Radziszewski Reaction Based on PAMAM Dendrimers in Imidazolium Ionic Liquid. Macromol. Rapid Commun. 2017, 38 (21), 1700415, 10.1002/marc.201700415
Dani, A.; Crocellà, V.; Magistris, C.; Santoro, V.; Yuan, J.; Bordiga, S. Click-Based Porous Cationic Polymers for Enhanced Carbon Dioxide Capture. J. Mater. Chem. A 2017, 5 (1), 372-383, 10.1039/C6TA08574A
Sirviö, J. A.; Visanko, M.; Liimatainen, H. Synthesis of Imidazolium-Crosslinked Chitosan Aerogel and Its Prospect as a Dye Removing Adsorbent. RSC Adv. 2016, 6 (61), 56544-56548, 10.1039/C6RA08301C
Talapaneni, S. N.; Buyukcakir, O.; Je, S. H.; Srinivasan, S.; Seo, Y.; Polychronopoulou, K.; Coskun, A. Nanoporous Polymers Incorporating Sterically Confined N-Heterocyclic Carbenes for Simultaneous CO2 Capture and Conversion at Ambient Pressure. Chem. Mater. 2015, 27 (19), 6818-6826, 10.1021/acs.chemmater.5b03104
Krannig, K.-S.; Esposito, D.; Antonietti, M. Highly Efficient Transfer of Amino Groups to Imidazolium Entities for Polymer Coupling and Cross-Linking. Macromolecules 2014, 47 (7), 2350-2353, 10.1021/ma500269k
Grygiel, K.; Kirchhecker, S.; Gong, J.; Antonietti, M.; Esposito, D.; Yuan, J. Main-Chain Polyimidazolium Polymers by One-Pot Synthesis and Application as Nitrogen-Doped Carbon Precursors. Macromol. Chem. Phys. 2017, 218 (18), 1600586, 10.1002/macp.201600586
Lindner, J.-P. Imidazolium-Based Polymers via the Poly-Radziszewski Reaction. Macromolecules 2016, 49 (6), 2046-2053, 10.1021/acs.macromol.5b02417
Castro-Grijalba, A.; Reyes-Gallardo, E. M.; Wuilloud, R. G.; Lucena, R.; Cárdenas, S. Synthesis of Magnetic Polymeric Ionic Liquid Nanocomposites by the Radziszewski Reaction. RSC Adv. 2017, 7 (68), 42979-42985, 10.1039/C7RA07947H
Zhang, W.; Zhao, Q.; Yuan, J. Porous Polyelectrolytes: The Interplay of Charge and Pores for New Functionalities. Angew. Chem., Int. Ed. 2018, 57 (23), 6754-6773, 10.1002/anie.201710272
Zhang, S.; Dokko, K.; Watanabe, M. Porous Ionic Liquids: Synthesis and Application. Chem. Sci. 2015, 6 (7), 3684-3691, 10.1039/C5SC01374G
Soll, S.; Zhao, Q.; Weber, J.; Yuan, J. Activated CO2 Sorption in Mesoporous Imidazolium-Type Poly(Ionic Liquid)-Based Polyampholytes. Chem. Mater. 2013, 25 (15), 3003-3010, 10.1021/cm4009128
Wilke, A.; Yuan, J.; Antonietti, M.; Weber, J. Enhanced Carbon Dioxide Adsorption by a Mesoporous Poly(Ionic Liquid). ACS Macro Lett. 2012, 1 (8), 1028-1031, 10.1021/mz3003352
Zulfiqar, S.; Sarwar, M. I.; Mecerreyes, D. Polymeric Ionic Liquids for CO2 Capture and Separation: Potential, Progress and Challenges. Polym. Chem. 2015, 6 (36), 6435-6451, 10.1039/C5PY00842E
Li, Y.; Qi, L.; Shen, Y.; Zhang, H.; Ma, H. Facile Fabrication of Polymeric Ionic Liquid Grafted Porous Polymer Monolith for Mixed-Mode High Performance Liquid Chromatography. Chin. J. Chem. 2014, 32 (7), 619-625, 10.1002/cjoc.201400188
Yin, M.-J.; Zhao, Q.; Wu, J.; Seefeldt, K.; Yuan, J. Precise Micropatterning of a Porous Poly(Ionic Liquid) via Maskless Photolithography for High-Performance Nonenzymatic H2O2 Sensing. ACS Nano 2018, 12 (12), 12551-12557, 10.1021/acsnano.8b07069
Lin, H.; Gong, J.; Miao, H.; Guterman, R.; Song, H.; Zhao, Q.; Dunlop, J. W. C.; Yuan, J. Flexible and Actuating Nanoporous Poly(Ionic Liquid)-Paper-Based Hybrid Membranes. ACS Appl. Mater. Interfaces 2017, 9 (17), 15148-15155, 10.1021/acsami.7b02920
Zhao, Q.; Yin, M.; Zhang, A. P.; Prescher, S.; Antonietti, M.; Yuan, J. Hierarchically Structured Nanoporous Poly(Ionic Liquid) Membranes: Facile Preparation and Application in Fiber-Optic PH Sensing. J. Am. Chem. Soc. 2013, 135 (15), 5549-5552, 10.1021/ja402100r
Huang, J.; Tao, C.; An, Q.; Lin, C.; Li, X.; Xu, D.; Wu, Y.; Li, X.; Shen, D.; Li, G. Visual Indication of Enviromental Humidity by Using Poly(Ionic Liquid) Photonic Crystals. Chem. Commun. 2010, 46 (23), 4103-4105, 10.1039/c003325a
Hu, X.; Huang, J.; Zhang, W.; Li, M.; Tao, C.; Li, G. Photonic Ionic Liquids Polymer for Naked-Eye Detection of Anions. Adv. Mater. 2008, 20 (21), 4074-4078, 10.1002/adma.200800808
Guo, Z.; Jiang, Q.; Shi, Y.; Li, J.; Yang, X.; Hou, W.; Zhou, Y.; Wang, J. Tethering Dual Hydroxyls into Mesoporous Poly(Ionic Liquid)s for Chemical Fixation of CO2 at Ambient Conditions: A Combined Experimental and Theoretical Study. ACS Catal. 2017, 7 (10), 6770-6780, 10.1021/acscatal.7b02399
Wang, Q.; Hou, W.; Li, S.; Xie, J.; Li, J.; Zhou, Y.; Wang, J. Hydrophilic Mesoporous Poly(Ionic Liquid)-Supported Au-Pd Alloy Nanoparticles towards Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid under Mild Conditions. Green Chem. 2017, 19 (16), 3820-3830, 10.1039/C7GC01116D
Gao, C.; Chen, G.; Wang, X.; Li, J.; Zhou, Y.; Wang, J. A Hierarchical Meso-Macroporous Poly(Ionic Liquid) Monolith Derived from a Single Soft Template. Chem. Commun. 2015, 51 (24), 4969-4972, 10.1039/C4CC09091H
Wang, X.; Zhou, Y.; Guo, Z.; Chen, G.; Li, J.; Shi, Y.; Liu, Y.; Wang, J. Heterogeneous Conversion of CO2 into Cyclic Carbonates at Ambient Pressure Catalyzed by Ionothermal-Derived Meso-Macroporous Hierarchical Poly(Ionic Liquid)S. Chem. Sci. 2015, 6 (12), 6916-6924, 10.1039/C5SC02050F
Kuzmicz, D.; Coupillaud, P.; Men, Y.; Vignolle, J.; Vendraminetto, G.; Ambrogi, M.; Taton, D.; Yuan, J. Functional Mesoporous Poly(Ionic Liquid)-Based Copolymer Monoliths: From Synthesis to Catalysis and Microporous Carbon Production. Polymer 2014, 55 (16), 3423-3430, 10.1016/j.polymer.2014.04.032
Huang, J.; Tao, C.; An, Q.; Zhang, W.; Wu, Y.; Li, X.; Shen, D.; Li, G. 3D-Ordered Macroporous Poly(Ionic Liquid) Films as Multifunctional Materials. Chem. Commun. 2010, 46 (6), 967-969, 10.1039/B921280A
Zhang, H.; Bai, L.; Wei, Z.; Liu, S.; Liu, H.; Yan, H. Fabrication of an Ionic Liquid-Based Macroporous Polymer Monolithic Column via Atom Transfer Radical Polymerization for the Separation of Small Molecules. Talanta 2016, 149, 62-68, 10.1016/j.talanta.2015.11.028
Täuber, K.; Zhao, Q.; Antonietti, M.; Yuan, J. Tuning the Pore Size in Gradient Poly(Ionic Liquid) Membranes by Small Organic Acids. ACS Macro Lett. 2015, 4 (1), 39-42, 10.1021/mz500674d
Zhao, Q.; Zhang, P.; Antonietti, M.; Yuan, J. Poly(Ionic Liquid) Complex with Spontaneous Micro-/Mesoporosity: Template-Free Synthesis and Application as Catalyst Support. J. Am. Chem. Soc. 2012, 134 (29), 11852-11855, 10.1021/ja303552p
Boyère, C.; Favrelle, A.; Léonard, A. F.; Boury, F.; Jérôme, C.; Debuigne, A. Macroporous Poly(Ionic Liquid) and Poly(Acrylamide) Monoliths from CO2-in-Water Emulsion Templates Stabilized by Sugar-Based Surfactants. J. Mater. Chem. A 2013, 1 (29), 8479-8487, 10.1039/c3ta11073g
Yan, F.; Texter, J. Surfactant Ionic Liquid-Based Microemulsions for Polymerization. Chem. Commun. 2006, 25, 2696-2698, 10.1039/b605287h
Zhang, T.; Sanguramath, R. A.; Israel, S.; Silverstein, M. S. Emulsion Templating: Porous Polymers and Beyond. Macromolecules 2019, 52 (15), 5445-5479, 10.1021/acs.macromol.8b02576
Kiefer, J.; Fries, J.; Leipertz, A. Experimental Vibrational Study of Imidazolium-Based Ionic Liquids: Raman and Infrared Spectra of 1-Ethyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide and 1-Ethyl-3-Methylimidazolium Ethylsulfate. Appl. Spectrosc. 2007, 61 (12), 1306-1311, 10.1366/000370207783292000
Qian, W.; Texter, J.; Yan, F. Frontiers in Poly(Ionic Liquid)s: Syntheses and Applications. Chem. Soc. Rev. 2017, 46 (4), 1124-1159, 10.1039/C6CS00620E
Lambert, R.; Coupillaud, P.; Wirotius, A.-L.; Vignolle, J.; Taton, D. Imidazolium-Based Poly(Ionic Liquid)s Featuring Acetate Counter Anions: Thermally Latent and Recyclable Precursors of Polymer-Supported N-Heterocyclic Carbenes for Organocatalysis. Macromol. Rapid Commun. 2016, 37 (14), 1143-1149, 10.1002/marc.201600019
Liu, D.; Sun, J.; Simmons, B. A.; Singh, S. N-Heterocyclic Carbene Promoted Decarboxylation of Lignin-Derived Aromatic Acids. ACS Sustainable Chem. Eng. 2018, 6 (6), 7232-7238, 10.1021/acssuschemeng.7b03612
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.