[en] Simultaneous condensation of aromatic aldehydes (ArxCHO; x =1–4) on chitosan biopolymer (CS)affords, after water-evaporation, structurally-conjugated aryl-functionalized CS-Arx-ffilms. Similarly, cooperative assembly of two-dimensional nanometric graphene oxide (GO), aromatic aldehyde and chitosan provides transparent, flexible and crack-free aldehyde-functionalized, ternary-reinforced CS-Arx-GO-f nanocomposite films. Homogenous films were obtained using ortho-hydroxybenzaldehyde Ar1 while the para-hydroxybenzaldehyde Ar4 was prone to packing inside. Textural and mechanical properties were investigated and expectedly, sig- nificant improvement was found for CS-Ar1-GO-f because of the great dispersion of the aromatic and the pre- sence of the filler. The sensitivity of unsaturated C]N imine bond to hydrolysis was explored for triggering controlled release of aromatics from the as-prepared films. All of them were found to induce a time-dependent aromatic release. It has been moreover observed that the release was significantly delayed in CS-Arx-GO-f compared to CS-Arx-f, a fact attributed to the interplay of the ring with the basal and edges of graphene oxide, through π-π stacking and additional hydrogen bonding interactions. This finding shows that beyond the con- ventional wisdom using fillers for improving thermal and mechanical properties, the tiny carbon sheets can act as a regulator for aldehyde release, thereby providing a way for more controlled chemical delivery from confined nanocomposites.
Research Center/Unit :
Research Unit, Center for Education and Research on Macromolecules (CERM) Group of Research in Energy and ENvironment from MATerials (GREENMAT) Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Chabbi, Jamal; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium > Euro-Med University of Fes (UEMF), Euromed Research Center. Engineering Division, Morocco > Cadi Ayyad University, Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials, Faculty of Sciences and Technologies, Morocco
Aqil, Abdelhafid ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Katir, Nadia
Vertruyen, Bénédicte ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Group of Research in Energy and ENvironment from MATerials (Greenmat) and Laboratory of Structural Inorganic Chemistry (LCIS), Belgium
Jérôme, Christine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Lahcini, Mohamed; Cadi Ayyad University, Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials, Faculty of Sciences and Technologies, Morocco > Mohammed VI Polytechnic University, Ben Guerir, Morocco
El Kadib, Abdelkrim; Euro-Med University of Fes (UEMF), Euromed Research Center. Engineering Division, Morocco
Language :
English
Title :
Aldehyde-conjugated chitosan-graphene oxide glucodynamers: ternary cooperative assembly and controlled chemical release
Ailincai, D., Bejan, A., Titorencu, I., Drobota, M., Simionescu, B.C., Imino-chitosan derivatives. Synthetic pathway and properties. Revue Roumaine Du Chimie 59:6–7 (2014), 385–392.
Ailincai, D., Marin, L., Morariu, S., Mares, M., Bostanaru, A.-C., Pinteala, M., Barboiu, M., Dual crosslinked iminoboronate-chitosan hydrogels with strong antifungal activity against Candida planktonic yeasts and biofilms. Carbohydrate Polymers 152 (2016), 306–316.
Alcântara, A.C.S., Darder, M., Aranda, P., Ruiz-Hitzky, E., Polysaccharide–fibrous clay bionanocomposites. Applied Clay Science 96 (2014), 2–8.
Anouar, A., Katir, N., Mamede, A.-S., Aboulaich, A., Draoui, K., Royer, S., El Kadib, A., Synthesis and multifaceted use of phosphorylated graphene oxide: Growth of titanium dioxide clusters, interplay with gold nanoparticles and exfoliated sheets in bioplastics. Materials Chemistry Frontiers 3 (2019), 242–250.
Antony, R., Arun, T., Manickam, S.T.D., A review on applications of chitosan-based Schiff bases. International Journal of Biological Macromolecules 129 (2019), 615–633.
Cervera, M.F., Heinämäki, J., Krogars, K., Jörgensen, A.C., Karjalainen, M., Colarte, A.I., Yliruusi, J., Solid-state and mechanical properties of aqueous chitosan-amylose starch films plasticized with polyols. AAPS Pharmacology Science Technology, 5(1), 2004, 109.
Chabbi, J., Jennah, O., Katir, N., Lahcini, M., Bousmina, M., El Kadib, A., Aldehyde-functionalized chitosan-montmorillonite films as dynamically-assembled, switchable-chemical release bioplastics. Carbohydrate Polymers 183 (2018), 287–293.
Croisier, F., Jérôme, C., Chitosan-based biomaterials for tissue engineering. European Polymer Journal 49:4 (2013), 780–792.
Crouvisier-Urion, K., Regina da Silva Farias, F., Arunatat, S., Griffin, D., Gerometta, M., Rocca-Smith, J.R., Karbowiak, T., Functionalization of chitosan with lignin to produce active materials by waste valorization. Green Chemistry 21:17 (2019), 4633–4641.
Darder, M., Colilla, M., Ruiz-Hitzky, E., Biopolymer−Clay nanocomposites based on chitosan intercalated in Montmorillonite. Chemistry of Materials 15:20 (2003), 3774–3780.
Darder, M., López-Blanco, M., Aranda, P., Aznar, A.J., Bravo, J., Ruiz-Hitzky, E., Microfibrous chitosan−Sepiolite nanocomposites. Chemistry of Materials 18:6 (2006), 1602–1610.
Dinu, M.V., Cocarta, A.I., Dragan, E.S., Synthesis, characterization and drug release properties of 3D chitosan/clinoptilolite biocomposite cryogels. Carbohydrate Polymers 153 (2016), 203–211.
Dohno, C., Okamoto, A., Saito, I., Stable, specific, and reversible base pairing via schiff base. Journal of the American Chemical Society 127:47 (2005), 16681–16684.
dos Santos, J.E., Dockal, E.R., Cavalheiro, É.T.G., Synthesis and characterization of Schiff bases from chitosan and salicylaldehyde derivatives. Carbohydrate Polymers 60:3 (2005), 277–282.
El Kadib, A., Chitosan as a sustainable organocatalyst: A concise overview. ChemSusChem 8:2 (2015), 217–244.
El Kadib, A., Bousmina, M., Chitosan bio-based organic–Inorganic hybrid aerogel microspheres. Chemistry - A European Journal 18:27 (2012), 8264–8277.
El Kadib, A., Bousmina, M., Brunel, D., Recent progress in chitosan bio-based Soft nanomaterials. Journal of Nanoscience and Nanotechnology 14:1 (2014), 308–331.
Ennajih, H., Bouhfid, R., Essassi, E.M., Bousmina, M., El Kadib, A., Chitosan–montmorillonite bio-based aerogel hybrid microspheres. Microporous and Mesoporous Materials 152 (2012), 208–213.
Frindy, S., Primo, A., Qaiss, A., Bouhfid, R., Lahcini, M., Garcia, H., El Kadib, A., Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres. Carbohydrate Polymers 146 (2016), 353–361.
Frindy, S., Primo, A., Ennajih, H., el kacem Qaiss, A., Bouhfid, R., Lahcini, M., El Kadib, A., Chitosan–Graphene oxide films and CO2-dried porous aerogel microspheres: Interfacial interplay and stability. Carbohydrate Polymers 167 (2017), 297–305.
Garg, B., Bisht, T., Ling, Y.-C., Graphene-based nanomaterials as heterogenous acid catalyst: A comprensive perspective. Molecules 19:9 (2014), 14582–14614.
Godoy-Alcántar, C., Yatsimirsky, A.K., Lehn, J.-M., Structure-stability correlations for imine formation in aqueous solution. Journal of Physical Organic Chemistry 18:10 (2005), 979–985.
Hammi, N., Wrońska, N., Katir, N., Lisowska, K., Marcotte, N., Cacciaguerra, T., El Kadib, A., Supramolecular chemistry-driven preparation of Nanostructured, transformable, and biologically active chitosan-clustered single, binary, and ternary metal oxide bioplastics. ACS Appl. Bio. Mater. 2:1 (2019), 61–69.
Han, D., Yan, L., Chen, W., Li, W., Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydrate Polymers 83:2 (2011), 653–658.
He, L., Wang, H., Xia, G., Sun, J., Song, R., Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications. Applied Surface Science 314 (2014), 510–515.
Jia, J., Gai, Y., Wang, W., Zhao, Y., Green synthesis of biocompatiable chitosan–graphene oxide hybrid nanosheet by ultrasonication method. Ultrasonics Sonochemistry 32 (2016), 300–306.
Jović-Jovičić, N., Mojović, Z., Darder, M., Aranda, P., Ruiz-Hitzky, E., Banković, P., Milutinović-Nikolić, A., Smectite-chitosan-based electrodes in electrochemical detection of phenol and its derivatives. Applied Clay Science 124–125 (2016), 62–68.
Katir, N., Benayad, A., Rouchon, D., Marcotte, N., El Brahmi, N., Majoral, J.P., El Kadib, A., Interfacial complexation driven three-dimensional assembly of cationic phosphorus dendrimers and graphene oxide sheets. Nanoscale Adv. 1 (2019), 314–321.
Macquarrie, D.J., Hardy, J.J.E., Applications of functionalized chitosan in catalysis. Industrial & Engineering Chemistry Research 44:23 (2005), 8499–8520.
Mahmoudi, N., Ostadhossein, F., Simchi, A., Physicochemical and antibacterial properties of chitosan-polyvinylpyrrolidone films containing self-organized graphene oxide nanolayers. Journal of Applied Polymer Science, 133(11), 2016.
Marin, L., Simionescu, B., Barboiu, M., Imino-chitosan biodynamers. Chemical Communications 48:70 (2012), 8778–8780.
Marin, L., Stoica, I., Mares, M., Dinu, V., Simionescu, B.C., Barboiu, M., Antifungal vanillin–imino-chitosan biodynameric films. Journal of Materials Chemistry B 1:27 (2013), 3353–3358.
Marin, L., Moraru, S., Popescu, M.-C., Nicolescu, A., Zgardan, C., Simionescu, B.C., Barboiu, M., Out-of-Water constitutional self-organization of chitosan–Cinnamaldehyde dynagels. Chemistry - A European Journal 20:16 (2014), 4814–4821.
Marin, L., Ailincai, D., Mares, M., Paslaru, E., Cristea, M., Nica, V., Simionescu, B.C., Imino-chitosan biopolymeric films. Obtaining, self-assembling, surface and antimicrobial properties. Carbohydrate Polymers 117 (2015), 762–770.
Marin, L., Ailincai, D., Morariu, S., Tartau-Mititelu, L., Development of biocompatible glycodynameric hydrogels joining two natural motifs by dynamic constitutional chemistry. Carbohydrate Polymers 170 (2017), 60–71.
Mohammadi, Z., Mesgar, A.S.-M., Rasouli-Disfani, F., Reinforcement of freeze-dried chitosan scaffolds with multiphasic calcium phosphate short fibers. Journal of the Mechanical Behavior of Biomedical Materials 61 (2016), 590–599.
Nunthanid, J., Puttipipatkhachorn, S., Yamamoto, K., Peck, G.E., Physical properties and molecular behavior of chitosan films. Drug Development and Industrial Pharmacy 27:2 (2001), 143–157.
Olaru, A.-M., Marin, L., Morariu, S., Pricope, G., Pinteala, M., Tartau-Mititelu, L., Biocompatible chitosan based hydrogels for potential application in local tumour therapy. Carbohydrate Polymers 179 (2018), 59–70.
Ordikhani, F., Ramezani Farani, M., Dehghani, M., Tamjid, E., Simchi, A., Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon 84 (2015), 91–102.
Pan, Y., Wu, T., Bao, H., Li, L., Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydrate Polymers 83:4 (2011), 1908–1915.
Purwanto, M., Atmaja, L., Mohamed, M.A., Salleh, M.T., Jaafar, J., Ismail, A.F., Widiastuti, N., Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel cells. RSC Advances 6:3 (2016), 2314–2322.
Rabea, E.I., Badawy, M.E.T., Stevens, C.V., Smagghe, G., Steurbaut, W., Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 4:6 (2003), 1457–1465.
Rinaudo, M., Chitin and chitosan: Properties and applications. Progress in Polymer Science 31:7 (2006), 603–632.
Sahariah, P., Másson, M., Antimicrobial chitosan and chitosan derivatives: A review of the structure–Activity relationship. Biomacromolecules 18:11 (2017), 3846–3868.
Schiff, H., Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue reihe organischer Basen. Justus Liebigs Annalen Der Chemie 131:1 (1864), 118–119.
Song, J., Wang, X., Chang, C.-T., Preparation and characterization of graphene oxide. J. Nanomater., 2014, 2014, 6.
Stroescu, M., Stoica-Guzun, A., Isopencu, G., Jinga, S.I., Parvulescu, O., Dobre, T., Vasilescu, M., Chitosan-vanillin composites with antimicrobial properties. Food Hydrocolloids 48 (2015), 62–71.
Suginta, W., Khunkaewla, P., Schulte, A., Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chemical Reviews 113:7 (2013), 5458–5479.
Thakur, V.K., Thakur, M.K., Recent advances in graft copolymerization and applications of chitosan: A review. ACS Sustainable Chem. Eng. 2:12 (2014), 2637–2652.
Tirkistani, F.A.A., Thermal analysis of some chitosan Schiff bases. Polymer Degradation and Stability 60:1 (1998), 67–70.
Valentin, R., Bonelli, B., Garrone, E., Di Renzo, F., Quignard, F., Accessibility of the functional groups of chitosan aerogel probed by FT-IR-Monitored deuteration. Biomacromolecules 8:11 (2007), 3646–3650.
Wang, H., Qian, J., Ding, F., Emerging chitosan-based films for food packaging applications. Journal of Agricultural and Food Chemistry 66:2 (2018), 395–413.
Wu, Q., Liang, D., Ma, X., Lu, S., Xiang, Y., Chitosan-based activated carbon as economic and efficient sustainable material for capacitive deionization of low salinity water. RSC Advances 9 (2019), 26676–26684.
Yadav, M., Ahmad, S., Montmorillonite/graphene oxide/chitosan composite: Synthesis, characterization and properties. International Journal of Biological Macromolecules 79 (2015), 923–933.
Yadav, S.K., Jung, Y.C., Kim, J.H., Ko, Y.-I., Ryu, H.J., Yadav, M.K., Cho, J.W., Mechanically robust, electrically conductive biocomposite films using antimicrobial chitosan-functionalized graphenes. Particle & Particle Systems 30:8 (2013), 721–727.