[en] One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs). In our previous work, we have proposed a method, called GENIE3, for the unsupervised inference of gene regulatory networks from expression data. This method decomposes the prediction of a regulatory network between p genes into p different regression problems and solves each of these problems using tree-based ensemble methods such as Random Forests. After a brief presentation of the method and a discussion of its performance when applied on steady-state and time series expression data, we will discuss its adaptation in the context of systems genetics data.
The idea of systems genetics is to exploit the natural variations that exist between the DNA sequences of related individuals and that can represent the randomized and multifactorial perturbations necessary to recover GRNs. We propose two new methods, called GENIE3-SG-joint and GENIE3- SG-sep, that incorporate information about genetic markers into the original GENIE3 method. The first one builds a single joint model incorporating both expression and genetic markers, while the second one builds two separate models and aggregate their predictions a posteriori. Experiments on the artificial data of the DREAM5 Systems Genetics challenge and of the more recent StatSeq benchmark show that both methods can benefit strongly from genetic data, with however a significant advantage to the GENIE3-SG-sep method, which outperforms by a large extent the official best performing method of the DREAM5 challenge data.
Disciplines :
Computer science Genetics & genetic processes
Author, co-author :
Huynh-Thu, Vân Anh ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Geurts, Pierre ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Language :
English
Title :
Gene regulatory network inference from expression and genetic data using tree-based methods
Publication date :
2013
Event name :
STATSEQ meeting on Gene Network Inference with Systems genetic data and beyond
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.