Environmental gradient; Functional trait; Heavy metals; Intraspecific variation; Niche breadth; Species turnover; Trait plasticity
Abstract :
[en] Questions: How do resource acquisition-related traits and stress tolerancerelated
traits shift along Cu and Co gradients? What are the relative contributions
of species turnover and intraspecific variation in driving these shifts?
Location: Fungurume V hill, Katanga province, Democratic Republic of Congo.
Methods: We measured five functional traits (vegetative height, leaf area,
specific leaf area (SLA) and leaf Cu and leaf Co concentration) related to
resource acquisition, competitive ability and metal tolerance strategy for 37 of
the most abundant species from 32 plots along natural Cu and Co gradients
(from 92 to 6737 mg kg
1 and 10 to 655 mg kg
1, respectively). Linear regression
was applied to analyse species-level and community-level changes in these
traits along the study gradients. Using variance decomposition, we evaluated the
relative contribution of intraspecific variation and species turnover to the total
community variation along the Cu gradient.
Results and Conclusions: At the community level, plant height and leaf area
decreased while SLA and leaf metal concentrations increased with increasing
soil metal concentration. At the species level, patterns were often idiosyncratic
and lacked generality. As a result, species turnover was the predominant factor
explaining community-level variation along the study gradients, which was particularly
clear for variation in leaf Cu concentration. This reflects the constitutive
ability of some species to exclude metal, while other species can tolerate high
metal concentrations in their leaves. The study emphasizes the importance of
evaluating the origin of phenotypic variations observed at the community level.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Delhaye, Guillaume; Université Libre de Bruxelles - ULB > Laboratoire d’Ecologie Végétale et Biogéochimie
Violle, Cyrille; Université de Montpellier – Université Paul-Valéry > CEFE UMR 5175, CNRS
Seleck, Maxime ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Ilunga wa Ilunga, Edouard
Daubie, Isaline; Université Libre de Bruxelles - ULB > Laboratoire d’Ecologie Végétale et Biogéochimie
Mahy, Grégory ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Meerts, Pierre; Université Libre de Bruxelles - ULB > Laboratoire d’Ecologie Végétale et Biogéochimie
Language :
English
Title :
Community variation in plant traits along copper and cobalt gradients
Agosta, S.J. & Klemens, J.A. 2008. Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecology Letters 11: 1123–1134.
Agrawal, A.A. 2001. Phenotypic plasticity in the interactions and evolution of species. Science 294: 321–326.
Albert, C.H., Thuiller, W., Yoccoz, N.G., Soudant, A., Boucher, F., Saccone, P. & Lavorel, S. 2010. Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology 98: 604–613.
Albert, C.H., Grassein, F., Schurr, F.M., Vieilledent, G. & Violle, C. 2011. When and how should intraspecific variability be considered in trait-based plant ecology? Perspectives in Plant Ecology, Evolution and Systematics 13: 217–225.
Antonovics, J., Bradshaw, A. & Turner, R. 1971. Heavy metal tolerance in plants. Advances in Ecological Research 7: 2–85.
Audet, P. & Charest, C. 2008. Allocation plasticity and plant-metal partitioning: meta-analytical perspectives in phytoremediation. Environmental Pollution 156: 290–296.
Auger, S. & Shipley, B. 2013. Interspecific and intraspecific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science 24: 419–428.
Baker, A.J.M. 1987. Metal tolerance. New Phytologist 106: 93–111.
Bizoux, J., Brevers, F., Meerts, P., Graitson, E. & Mahy, G. 2004. Ecology and conservation of Belgian populations of Viola calaminaria, a metallophyte with a restricted geographic distribution. Belgian Journal of Botany 137: 91–104.
Boyd, R.S. 2007. The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant and Soil 293: 153–176.
Boyd, R.S., Shaw, J.J. & Martens, S.N. 1994. Nickel hyperaccumulation defends Streptanthus polygaloides (Brassicaceae) against pathogens. American Journal of Botany 81: 294–300.
Brady, K.U., Kruckeberg, A.R. & Bradshaw, H.D. Jr 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution, and Systematics 36: 243–266.
Bray, J.R. & Curtis, J.T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.
Chipeng, F.K., Hermans, C., Colinet, G., Faucon, M.-P., Ngongo, M., Meerts, P. & Verbruggen, N. 2010. Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. & Plancke. Plant and Soil 328: 235–244.
Cingolani, A.M., Cabido, M., Gurvich, D.E., Renison, D. & Diaz, S. 2007. Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? Journal of Vegetation Science 18: 911–920.
Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., Ter Steege, H., Morgan, H.D., (…) & Poorter, H. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51: 335–380.
Cornwell, W. & Ackerly, D.D. 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79: 109–126.
Crispo, E. 2008. Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. Journal of Evolutionary Biology 21: 1460–1469.
Dahmani-Muller, H., Van Oort, F., Gélie, B. & Balabane, M. 2000. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution 109: 231–238.
De Laender, F., Melian, C.J., Bindler, R., Van den Brink, P.J., Daam, M., Roussel, H., Juselius, J., Verschuren, D. & Janssen, C.R. 2014. The contribution of intra- and interspecific tolerance variability to biodiversity changes along toxicity gradients. Ecology Letters 17: 72–81.
Dechamps, C., Lefèbvre, C., Noret, N. & Meerts, P. 2007. Reaction norms of life history traits in response to zinc in Thlaspi caerulescens from metalliferous and nonmetalliferous sites. New Phytologist 173: 191–198.
Dechamps, C., Noret, N., Mozek, R., Escarré, J., Lefèbvre, C., Gruber, W. & Meerts, P. 2008. Cost of adaptation to a metalliferous environment for Thlaspi caerulescens: a field reciprocal transplantation approach. New Phytologist 177: 167–177.
Dice, L.R. 1945. Measures of the amount of ecologic association between species. Ecology 26: 297–302.
Dickinson, N.M., Turner, A.P. & Lepp, N.W. 1991. How do trees and other long-lived plants survive in polluted environments? Functional Ecology 5: 5–11.
Duvigneaud, P. 1958. Etudes sur la végétation du Katanga et de ses sols métallifères. Bulletin de la Société Royale de Botanique de Belgique 90: 127–286.
Duvigneaud, P. & Denaeyer-De Smet, S. 1963. Cuivre et végétation au Katanga. Bulletin de la Société Royale de Botanique de Belgique 96: 93–231.
Enquist, B.J., Norberg, J., Bonser, S.P., Violle, C., Webb, C.T., Henderson, A., Sloat, L.L. & Savage, V.M. 2015. Scaling from traits to ecosystems: developing a general Trait Driver Theory via integrating trait-based and metabolic scaling theories. Advances in Ecological Research 52: 249–318.
Farris, M.A. & Lechowicz, M.J. 1990. Functional interactions among traits that determine reproductive success in a native annual plant. Ecology 71: 548–557.
Faucon, M.-P., Shutcha, M.N. & Meerts, P. 2007. Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant and Soil 301: 29–36.
Faucon, M.-P., Colinet, G., Mahy, G., Ngongo Luhembwe, M., Verbruggen, N. & Meerts, P. 2009. Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant and Soil 317: 201–212.
Faucon, M.-P., Meersseman, A., Shutcha, M.N., Mahy, G., Ngongo Luhembwe, M., Malaisse, F. & Meerts, P. 2010. Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecology and Evolution 143: 5–18.
Faucon, M.-P., Le Stradic, S., Boisson, S., Ilunga wa Ilunga, E., Séleck, M., Lange, B., Delhaye, G., Shutcha, M., Pourret, O., Meerts, P. & Mahy, G. (2016). Implication of plant–soil relationships for conservation and restoration of copper–cobalt ecosystems. Plant and Soil. 403: 153–165.
Garnier, E. & Navas, M.-L. 2013. Diversité fonctionnelle des plantes. De Boek, Bruxelles, BE.
Garnier, E., Cortez, J., Billès, G., Navas, M.-L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., Bellmann, A., Neill, C. & Toussaint, J.-P. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85: 2630–2637.
Ghalambor, C.K., McKay, J.K., Carroll, S.P. & Reznick, D.N. 2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology 21: 394–407.
Griffith, T. & Sultan, S.E. 2012. Field-based insights to the evolution of specialization: plasticity and fitness across habitats in a specialist/generalist species pair. Ecology and Evolution 2: 778–791.
Hoenig, M. & de Kersabiec, A.-M. 1996. Sample preparation steps for analysis by atomic spectroscopy methods: present status. Spectrochimica Acta Part B: Atomic Spectroscopy 51: 1297–1307.
Huang, Q.Q., Pan, X.Y., Fan, Z.W. & Peng, S.L. 2015. Stress relief may promote the evolution of greater phenotypic plasticity in exotic invasive species: a hypothesis. Ecology and Evolution 5: 1169–1177.
Ilunga wa Ilunga, E., Seleck, M., Colinet, G., Faucon, M.-P., Meerts, P. & Mahy, G. 2013. Small-scale diversity of plant communities and distribution of species niches on a copper rock outcrop in Upper Katanga, DR Congo. Plant Ecology and Evolution 146: 173–182.
Jiménez-Ambriz, G., Petit, C., Bourrié, I., Dubois, S., Olivieri, I. & Ronce, O. 2007. Life history variation in the heavy metal tolerant plant Thlaspi caerulescens growing in a network of contaminated and noncontaminated sites in southern France: role of gene flow, selection and phenotypic plasticity. New Phytologist 173: 199–215.
Jung, V., Violle, C., Mondy, C., Hoffmann, L. & Muller, S. 2010. Intraspecific variability and trait-based community assembly. Journal of Ecology 98: 1134–1140.
Kabata-Pendias, A. & Pendias, H. 2001. Trace elements in soils and plants. CRC Press, Boca Raton, FL, US.
Kahle, H. 1993. Response of roots of trees to heavy metals. Environmental and Experimental Botany 33: 99–119.
Kawecki, T.J. & Ebert, D. 2004. Conceptual issues in local adaptation. Ecology Letters 7: 1225–1241.
Kazakou, E., Dimitrakopoulos, P.G., Baker, A.J.M., Reeves, R.D. & Troumbis, A.Y. 2008. Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biological Reviews 83: 495–508.
Kazakou, E., Violle, C., Roumet, C., Navas, M.-L., Vile, D., Kattge, J. & Garnier, E. 2014. Are trait-based species rankings consistent across data sets and spatial scales? Journal of Vegetation Science 25: 235–247.
Kichenin, E., Wardle, D.A., Peltzer, D.A., Morse, C.W. & Freschet, G.T. 2013. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology 27: 1254–1261.
Lange, B., Faucon, M.-P., Meerts, P., Shutcha, M., Mahy, G. & Pourret, O. 2014. Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils. Plant and Soil 379: 275–287.
Lange, B., Pourret, O., Meerts, P., Jitaru, P., Cancès, B., Grison, C. & Faucon, M.-P. 2016. Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors. Chemosphere 146: 75–84.
Legendre, P. & Legendre, L.F. 1998. Numerical ecology, 2nd edn. Elsevier, Amsterdam, NL.
Lepš, J., de Bello, F., Šmilauer, P. & Doležal, J. 2011. Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography 34: 856–863.
Liu, F. & Stützel, H. 2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae 102: 15–27.
Macnair, M.R. 1987. Heavy metal tolerance in plants: a model evolutionary system. Trends in Ecology & Evolution 2: 354–359.
Marks, C.O. 2007. The cause of variation in tree seedling traits : the roles of environmental selection versus chance. Evolution 61: 455–469.
Mayfield, M.M. & Levine, J.M. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13: 1085–1093.
McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.
Münkemüller, T., Gallien, L., Lavergne, S., Renaud, J., Roquet, C., Abdulhak, S., Dullinger, S., Garraud, L., Guisan, A., (…) & Thuiller, W. 2014. Scale decisions can reverse conclusions on community assembly processes. Global Ecology and Biogeography 23: 620–632.
Pakeman, R.J. & Quested, H.M. 2007. Sampling plant functional traits: what proportion of the species need to be measured? Applied Vegetation Science 10: 91–96.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., (…) & Cornelissen, J.H.C. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167–234.
Pérez-Ramos, I.M., Roumet, C., Cruz, P., Blanchard, A., Autran, P. & Garnier, E. 2012. Evidence for a “plant community economics spectrum” driven by nutrient and water limitations in a Mediterranean rangeland of southern France. Journal of Ecology 100: 1315–1327.
Poorter, H., Niinemets, U., Poorter, L., Wright, I.J. & Villar, R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182: 565–588.
Pulford, I.D. & Watson, C. 2003. Phytoremediation of heavy metal-contaminated land by trees—a review. Environment International 29: 529–540.
Reznick, D.N. & Ghalambor, C.K. 2001. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112–113: 183–198.
Rice, S.A. & Bazzaz, F.A. 1989. Growth consequences of plasticity of plant traits in response to light conditions. Oecologia 78: 508–512.
Roche, P., Díaz-Burlinson, N. & Gachet, S. 2004. Congruency analysis of species ranking based on leaf traits: which traits are the more reliable? Plant Ecology 174: 37–48.
Ryser, P. & Eek, L. 2000. Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources. American Journal of Botany 87: 402–411.
Saad, L., Parmentier, I., Colinet, G., Malaisse, F., Faucon, M.-P., Meerts, P. & Mahy, G. 2012. Investigating the vegetation–soil relationships on the copper–cobalt rock outcrops of Katanga (D. R. Congo), an essential step in a biodiversity conservation plan. Restoration Ecology 20: 405–415.
Sambatti, J.B.M. & Rice, K.J. 2006. Local adaptation, patterns of selection, and gene flow in the Californian serpentine sunflower (Helianthus exilis). Evolution 60: 696–710.
Séleck, M., Bizoux, J., Colinet, G., Faucon, M.-P., Guillaume, A., Meerts, P., Piqueray, J. & Mahy, G. 2013. Chemical soil factors influencing plant assemblages along copper–cobalt gradients: implications for conservation and restoration. Plant and Soil 373: 455–469.
Shipley, B., Vile, D. & Garnier, E. 2006. From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science 314: 812–814.
Siefert, A., Violle, C., Chalmandrier, L., Albert, C.H., Taudiere, A., Fajardo, A., Aassen, L.W., Baroloto, C., Carlucci, M.B., (…) & Wardle, D.A. 2015. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters 18: 1406–1419.
Sultan, S.E. 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 5: 537–542.
Sultan, S.E. 2001. Phenotypic plasticity for fitness components in Polygonum species of contrasting ecological breadth. Ecology 82: 328–343.
Turner, T.L., Bourne, E.C., Von Wettberg, E.J., Hu, T.T. & Nuzhdin, S.V. 2010. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature Genetics 42: 260–263.
Violle, C. & Jiang, L. 2009. Towards a trait-based quantification of species niche. Journal of Plant Ecology 2: 87–93.
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E. 2007. Let the concept of trait be functional!. Oikos 116: 882–892.
Violle, C., Enquist, B.J., McGill, B.J., Jiang, L., Albert, C.H., Hulshof, C., Jung, V. & Messier, J. 2012. The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution 27: 244–252.
Weiher, E. & Keddy, P.A. 1995. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74: 159–164.
Weiher, E., Freund, D., Bunton, T., Stefanski, A., Lee, T. & Bentivenga, S. 2011. Advances, challenges and a developing synthesis of ecological community assembly theory. Philosophical Transactions of the Royal Society B, Biological sciences 366: 2403–2413.