copper; environmental filter; functional diversity; metal tolerance; phylogenetic diversity; species turnover; toxicity gradient; trait clustering; trait overdispersion
Abstract :
[en] Questions: Do functional and phylogenetic diversity vary along a natural metal gradient? Do resources acquisition and metal tolerance-related traits show the same patterns of variation? Is the ability to grow on metal-enriched soil phylogenetically conserved or the result of functional convergence?. Location: Fungurume V hill (10°37′03″ S, 26°17′22″ E), Upper Katanga, Democratic Republic of Congo. Methods: In 21 communities along a natural copper gradient, we quantified the variation of species richness and turnover as well as the phylogenetic diversity. We assessed the variation of three univariate functional indices — community-weighted mean, functional richness and functional dispersion — for ten functional traits related to resources acquisition, conservation, dispersal and metal tolerance strategy. Results and Conclusions: Along a gradient of increasing soil Cu concentration, we found a decrease in species number and a strong species turnover. On metal-poor soils, phylogenetic clustering and overdispersion of functional traits indicated selection for certain clades (e.g. Fabaceae) with many different trait combinations suggesting niche partitioning. On metal-enriched soils, contrary to expectations, we found functional convergence towards trait values associated with rapid resource use, lower stature and smaller seeds in several clades. Conversely, metal tolerance strategy showed a clear overdispersion on metal-rich soils reflecting the presence of several strategies to cope with the excess of metal in the soil. This suggests that some extreme toxicity gradients, such as this one, do not always impose strong functional convergence towards a stress tolerance strategy, as is often assumed.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Delhaye, Guillaume; Université Libre de Bruxelles - ULB > Evolutionary Biology and Ecology Unit
Hardy, Olivier J.; Université Libre de Bruxelles - ULB > Evolutionary Biology and Ecology Unit
Seleck, Maxime ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Ilunga wa Ilunga, Edouard; University of Lubumbashi > Faculty of Agronomy > Ecology, Restoration Ecology and Landscape research Unit
Mahy, Grégory ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Meerts, Pierre; Université Libre de Bruxelles - ULB > Laboratoire d'Ecologie Végétale et Biogéochimie
Language :
English
Title :
Plant community assembly along a natural metal gradient in central Africa: Functional and phylogenetic approach
Aerts, R., & Chapin, F. S. III (1999). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1–67. https://doi.org/10.1016/S0065-2504(08)60016-1
Baker, A. J. M. (1981). Accumulators and excluders strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654. https://doi.org/10.1080/01904168109362867
Baker, A. J. M. (1987). Metal tolerance. New Phytologist, 106, 93–111. https://doi.org/10.1111/j.1469-8137.1987.tb04685.x
Baker, A. J. M., Ernst, W. H. O., van der Ent, A., Malaisse, F., & Ginocchio, R. (2010). Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. In L. C. Batty, & K. B. Hallberg (Eds.), Ecology of industrial pollution (pp. 7–38). Cambridge: Cambridge University Press.
Baker, A. J. M., & Proctor, J. (1990). The influence of cadmium, copper, lead, and zinc on the distribution and evolution of metallophytes in the British Isles. Plant Systematics and Evolution, 173, 91–108. https://doi.org/10.1007/BF00937765
Baraloto, C., Hardy, O. J., Paine, C. E., Dexter, K. G., Cruaud, C., Dunning, L. T., … Chave, J. (2012). Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology, 100, 690–701. https://doi.org/10.1111/j.1365-2745.2012.01966.x
Bernard-Verdier, M., Flores, O., Navas, M. L., & Garnier, E. (2013). Partitioning phylogenetic and functional diversity into alpha and beta components along an environmental gradient in a Mediterranean rangeland. Journal of Vegetation Science, 24, 877–889. https://doi.org/10.1111/jvs.12048
Bernard-Verdier, M., Navas, M. L., Vellend, M., Violle, C., Fayolle, A., & Garnier, E. (2012). Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology, 100, 1422–1433. https://doi.org/10.1111/1365-2745.12003
Bertness, M. D., & Callaway, R. (1994). Positive interactions in communities. Trends in Ecology and Evolution, 9, 191–193. https://doi.org/10.1016/0169-5347(94)90088-4
Blomberg, S. P., Garland, T. Jr, & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
Boisson, S., Faucon, M. P., Le Stradic, S., Lange, B., Verbruggen, N., Garin, O., … Mahy, G. (2017). Specialized edaphic niches of threatened copper endemic plant species in the DR Congo: Implications for ex situ conservation. Plant and Soil, 413, 261–273. https://doi.org/10.1007/s11104-016-3095-7
Brady, K. U., Kruckeberg, A. R., & Bradshaw, H. D. Jr (2005). Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology Evolution and Systematics, 36, 243–266. https://doi.org/10.1146/annurev.ecolsys.35.021103.105730
Brown, T. A., & Shrift, A. (1982). Selenium: Toxicity and tolerance in higher plants. Biological Reviews, 57, 59–84. https://doi.org/10.1111/j.1469-185X.1982.tb00364.x
Butterfield, B. J., & Suding, K. N. (2013). Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. Journal of Ecology, 101, 9–17. https://doi.org/10.1111/1365-2745.12013
Cadotte, M. W., & Davies, T. J. (2016). Phylogenies in ecology: A guide to concepts and methods, 1st ed. Princeton, NJ: Princeton University Press.
Chipeng, F. K., Hermans, C., Colinet, G., Faucon, M. P., Ngongo, M., Meerts, P., & Verbruggen, N. (2010). Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) PA Duvign. & Plancke. Plant and Soil, 328, 235–244. https://doi.org/10.1007/s11104-009-0105-z
D’Andrea, R., & Ostling, A. (2016). Challenges in linking trait patterns to niche differentiation. Oikos, 125, 1369–1385. https://doi.org/10.1111/oik.02979
Delhaye, G., Violle, C., Séleck, M., Ilunga wa Ilunga, E., Daubie, I., Mahy, G., & Meerts, P. (2016). Community variation in plant traits along copper and cobalt gradients. Journal of Vegetation Science, 27, 854–864. https://doi.org/10.1111/jvs.12394
Dixon, A. P., Faber-Langendoen, D., Josse, C., Morrison, J., & Loucks, C. J. (2014). Distribution mapping of world grassland types. Journal of Biogeography, 41, 2003–2019. https://doi.org/10.1111/jbi.12381
Dray, S., & Dufour, A. B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22, 1–20. https://doi.org/10.18637/jss.v022.i04
Duvigneaud, P., & Denaeyer-De Smet, S. (1963). Études sur la végétation du Katanga et de ses sols métallifères. Bulletin De La Société Royale De Botanique De Belgique, 96, 93–231.
Ernst, W. H. (2006). Evolution of metal tolerance in higher plants. Forest Snow and Landscape Research, 80, 251–274.
Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1–10. https://doi.org/10.1016/0006-3207(92)91201-3
Faucon, M. P., Colinet, G., Mahy, G., Luhembwe, M. N., Verbruggen, N., & Meerts, P. (2009). Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant and Soil, 317, 201–212. https://doi.org/10.1007/s11104-008-9801-3
Faucon, M. P., Shutcha, M. N., & Meerts, P. (2007). Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: Influence of washing and metal concentrations in soil. Plant and Soil, 301, 29–36. https://doi.org/10.1007/s11104-007-9405-3
Garnier, E., Cortez, J., Billès, G., Navas, M. L., Roumet, C., Debussche, M., … Toussaint, J.-P. (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630–2637. https://doi.org/10.1890/03-0799
Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V., & Prinzing, A. (2015). Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology, 29, 600–614. https://doi.org/10.1111/1365-2435.12425
Grime, J. P. (2006). Plant strategies, vegetation processes, and ecosystem properties, (2nd ed.). Chichester, UK: John Wiley & Sons.
Guo, H., Feng, X., Hong, C., Chen, H., Zeng, F., Zheng, B., & Jiang, D. (2017). Malate secretion from the root system is an important reason for higher resistance of Miscanthus sacchariflorus to cadmium. Physiologia Plantarum, 159, 340–353. https://doi.org/10.1111/ppl.12526
Gutiérrez-Cánovas, C., Sánchez-Fernández, D., Velasco, J., Millán, A., & Bonada, N. (2015). Similarity in the difference: Changes in community functional features along natural and anthropogenic stress gradients. Ecology, 96, 2458–2466. https://doi.org/10.1890/14-1447.1
Hoenig, M., & de Kersabiec, A. M. (1996). Sample preparation steps for analysis by atomic spectroscopy methods: Present status. Spectrochimica Acta Part B: Atomic Spectroscopy, 51, 1297–1307. https://doi.org/10.1016/0584-8547(96)01507-8
Kabata-Pendias, A. (2010). Trace elements in soils and plants. Boca Raton, FL: CRC Press.
Kazakou, E., Dimitrakopoulos, P. G., Baker, A. J. M., Reeves, R. D., & Troumbis, A. Y. (2008). Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: From species to ecosystem level. Biological Reviews, 83, 495–508. https://doi.org/10.1111/j.1469-185X.2008.00051.x
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., … Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463–1464. https://doi.org/10.1093/bioinformatics/btq166
Kinraide, T. B., Parker, D. R., & Zobel, R. W. (2005). Organic acid secretion as a mechanism of aluminium resistance: A model incorporating the root cortex, epidermis, and the external unstirred layer. Journal of Experimental Botany, 56, 1853–1865. https://doi.org/10.1093/jxb/eri175
Kraft, N. J., & Ackerly, D. D. (2013). Assembly of Plant Communities. In R. Monson (Ed.), Ecology and the environment (pp. 67–88). The plant science 8, New York, NY: Springer.
Kruckeberg, A. R. (1951). Intraspecific variability in the response of certain native plant species to serpentine soil. American Journal of Botany, 38, 408–419. https://doi.org/10.1002/j.1537-2197.1951.tb14842.x
Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299–305. https://doi.org/10.1890/08-2244.1
Lange, B., Ent, A., Baker, A. J. M., Echevarria, G., Mahy, G., Malaisse, F., … Faucon, M. P. (2016). Copper and cobalt accumulation in plants: A critical assessment of the current state of knowledge. New Phytologist, 213, 537–551. https://doi.org/10.1111/nph.14175
MacArthur, R. H. (1968). The theory of the niche. In R. Lewontin (Ed.), Population biology and evolution (pp. 159–176). New York, NY: Syracuse University Press.
Maherali, H., Pockman, W. T., & Jackson, R. B. (2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85, 2184–2199. https://doi.org/10.1890/02-0538
Mason, N. W., Bello, F., Mouillot, D., Pavoine, S., & Dray, S. (2013). A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science, 24, 794–806. https://doi.org/10.1111/jvs.12013
Mason, N. W., & Pavoine, S. (2013). Does trait conservatism guarantee that indicators of phylogenetic community structure will reveal niche-based assembly processes along stress gradients? Journal of Vegetation Science, 24, 820–833. https://doi.org/10.1111/jvs.12033
Mason, N. W., Richardson, S. J., Peltzer, D. A., de Bello, F., Wardle, D. A., & Allen, R. B. (2012). Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. Journal of Ecology, 100, 678–689. https://doi.org/10.1111/j.1365-2745.2012.01965.x
Mayfield, M. M., & Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085–1093. https://doi.org/10.1111/j.1461-0248.2010.01509.x
Mouillot, D., Mason, N. W., & Wilson, J. B. (2007). Is the abundance of species determined by their functional traits? A new method with a test using plant communities. Oecologia, 152, 729–737. https://doi.org/10.1007/s00442-007-0688-0
Mouillot, D., Villéger, S., Scherer-Lorenzen, M., & Mason, N. W. (2011). Functional structure of biological communities predicts ecosystem multifunctionality. PLoS ONE, 6, e17476. https://doi.org/10.1371/journal.pone.0017476
Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M. H. H., Oksanen, M. J., & Suggests, M. A. S. S. (2007). The vegan package. Community ecology package, 10, 631–637.
Pakeman, R. J., Lennon, J. J., & Brooker, R. W. (2011). Trait assembly in plant assemblages and its modulation by productivity and disturbance. Oecologia, 167, 209–218. https://doi.org/10.1007/s00442-011-1980-6
Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290. https://doi.org/10.1093/bioinformatics/btg412
Pavoine, S., & Bonsall, M. B. (2011). Measuring biodiversity to explain community assembly: A unified approach. Biological Reviews, 86, 792–812. https://doi.org/10.1111/j.1469-185X.2010.00171.x
Pavoine, S., & Ricotta, C. (2014). Functional and phylogenetic similarity among communities. Methods in Ecology and Evolution, 5, 666–675. https://doi.org/10.1111/2041-210X.12193
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., … Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167–234. https://doi.org/10.1071/BT12225
Pescador, D. S., de Bello, F., Valladares, F., & Escudero, A. (2015). Plant trait variation along an altitudinal gradient in mediterranean high mountain grasslands: Controlling the species turnover effect. PLoS ONE, 10, e0118876. https://doi.org/10.1371/journal.pone.0118876
Pourret, O., Lange, B., Bonhoure, J., Colinet, G., Decrée, S., Mahy, G., … Faucon, M.-P. (2016). Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo). Applied Geochemistry, 64, 43–55. https://doi.org/10.1016/j.apgeochem.2015.07.012
Qian, H., & Jin, Y. (2016). An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology, 9, 233–239. https://doi.org/10.1093/jpe/rtv047
R Core Team (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
Saad, L., Parmentier, I., Colinet, G., Malaisse, F., Faucon, M.-P., Meerts, P., & Mahy, G. (2012). Investigating the vegetation-soil relationships on the copper-cobalt rock outcrops of Katanga (D. R. Congo), an essential step in a biodiversity conservation plan. Restoration Ecology, 20, 405–415. https://doi.org/10.1111/j.1526-100X.2011.00786.x
Saif, S., Zaidi, A., Khan, M. S., & Rizvi, A. (2017). Metal-legume-microbe interactions: Toxicity and remediation. In A. Zaidi, M. Khan, & J. Musarrat (Eds.), Microbes for legume improvement (pp. 367–385). Cham: Springer. https://doi.org/10.1007/978-3-319-59174-2_15
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. https://doi.org/10.1038/nmeth.2089
Séleck, M., Bizoux, J., Colinet, G., Faucon, M.-P., Guillaume, A., Meerts, P., … Mahy, G. (2013). Chemical soil factors influencing plant assemblages along copper-cobalt gradients: Implications for conservation and restoration. Plant and Soil, 373, 455–469. https://doi.org/10.1007/s11104-013-1819-5
Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., … Wardle, D. A. (2015). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406–1419. https://doi.org/10.1111/ele.12508
Spasojevic, M. J., & Suding, K. N. (2012). Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology, 100, 652–661. https://doi.org/10.1111/j.1365-2745.2011.01945.x
Stubbs, W. J., & Wilson, J. B. (2004). Evidence for limiting similarity in a sand dune community. Journal of Ecology, 92, 557–567. https://doi.org/10.1111/j.0022-0477.2004.00898.x
Swenson, N. G., & Enquist, B. J. (2009). Opposing assembly mechanisms in a Neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology, 90, 2161–2170. https://doi.org/10.1890/08-1025.1
Valiente-Banuet, A., & Verdú, M. (2007). Facilitation can increase the phylogenetic diversity of plant communities. Ecology Letters, 10, 1029–1036. https://doi.org/10.1111/j.1461-0248.2007.01100.x
Vile, D., Garnier, É., Shipley, B., Laurent, G., Navas, M.-L., Roumet, C., … Wright, I. J. (2005). Specific leaf area and dry matter content estimate thickness in laminar leaves. Annals of Botany, 96, 1129–1136. https://doi.org/10.1093/aob/mci264
Villéger, S., Mason, N. W., & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290–2301. https://doi.org/10.1890/07-1206.1
Weiher, E., Freund, D., Bunton, T., Stefanski, A., Lee, T., & Bentivenga, S. (2011). Advances, challenges and a developing synthesis of ecological community assembly theory. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366, 2403–2413. https://doi.org/10.1098/rstb.2011.0056
Weiher, E., & Keddy, P. A. (1995). Assembly rules, null models, and trait dispersion: New questions from old patterns. Oikos, 74, 159–164. https://doi.org/10.2307/3545686
Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213–227. https://doi.org/10.1023/A:1004327224729
Wierzbicka, M., & Pielichowska, M. (2004). Adaptation of Biscutella laevigata L, a metal hyperaccumulator, to growth on a zinc–lead waste heap in southern Poland: I: Differences between waste-heap and mountain populations. Chemosphere, 54, 1663–1674. https://doi.org/10.1016/j.chemosphere.2003.08.031
Wilson, J. B. (1988). The cost of heavy-metal tolerance: An example. Evolution, 42, 408–413. https://doi.org/10.2307/2409246
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827. https://doi.org/10.1038/nature02403
Xu, J., Chen, Y., Zhang, L., Chai, Y., Wang, M., Guo, Y., … Yue, M. (2017). Using phylogeny and functional traits for assessing community assembly along environmental gradients: A deterministic process driven by elevation. Ecology and Evolution, 7, 5056–5069. https://doi.org/10.1002/ece3.3068
Załecka, R., & Wierzbicka, M. (2002). The adaptation of Dianthus carthusianorum L. (Caryophyllaceae) to growth on a zinc–lead heap in southern Poland. Plant and Soil, 246, 249–257. https://doi.org/10.1023/A:1020612930364
Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., … Beaulieu, J. M. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89–92. https://doi.org/10.1038/nature12872