Bachmann, C.; Department of Biomedicine, Basel University Hospital, Basel, Switzerland, Departments of Anesthesia, Basel University Hospital, Basel, Switzerland
Noreen, F.; Genome Plasticity Group, Department of Biomedicine, University of Basel, Basel, Switzerland
Voermans, N. C.; Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
Schär, P. L.; Genome Plasticity Group, Department of Biomedicine, University of Basel, Basel, Switzerland
Vissing, J.; Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Fock, J. M.; Department of Neurology, University Hospital Groningen, Groningen, Netherlands
BULK, Saskia ; Centre Hospitalier Universitaire de Liège - CHU > Unilab > Clinique de génétique
Kusters, B.; Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
Moore, S. A.; Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa, IA, United States
Beggs, A. H.; Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
Mathews, K. D.; Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa, IA, United States, Department of Neurology, Carver College of Medicine, University of Iowa, Iowa, IA, United States
Meyer, M.; Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa, IA, United States
Genetti, C. A.; Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
Meola, G.; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy, Department of Neurology, IRCCS Policlinico San Donato Milanese, Milan, Italy
Cardani, R.; Laboratory of Muscle Histopathology and Molecular Biology IRCCS-Policlinico San Donato, Milan, Italy
Mathews, E.; MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
Jungbluth, H.; Department of Paediatric Neurology, Neuromuscular Service, Evelina Children’s Hospital, St. Thomas’ Hospital, London, United Kingdom, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom, Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College, London, United Kingdom
Muntoni, F.; Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Diseases, UCL, Institute of Child Health, London, United Kingdom, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
Zorzato, F.; Department of Biomedicine, Basel University Hospital, Basel, Switzerland, Departments of Anesthesia, Basel University Hospital, Basel, Switzerland, Department of Life Sciences, Microbiology and Applied Pathology Section, University of Ferrara, Ferrara, Italy
Treves, S.; Department of Biomedicine, Basel University Hospital, Basel, Switzerland, Departments of Anesthesia, Basel University Hospital, Basel, Switzerland, Department of Life Sciences, Microbiology and Applied Pathology Section, University of Ferrara, Ferrara, Italy
Arbogast, S., Beuvin, M., Fraysse, B., Zhou, H., Muntoni, F., & Ferreiro, A. (2009). Oxidative stress in SEPN1-related myopathy: From pathophysiology to treatment. Annals of Neurolology, 65, 677–686. https://doi.org/10.1002/ana.21644
Bachmann, C., Jungbluth, H., Muntoni, F., Manzur, A. Y., Zorzato, F., & Treves, S. (2017). Cellular, biochemical and molecular changes in muscles from patients with X-linked myotubular myopathy due to MTM1 mutations. Human Molecular Genetics, 26, 320–332. https://doi.org/10.1093/hmg/ddw388
Barski, A., Cuddapah, S., Cui, K., Ron, T. Y., Schones, D. E., Wang, Z., … Zhao, K. (2007). High resolution profiling of histone methylation in the human genome. Cell, 129, 823–837. https://doi.org/10.1016/j.cell.2007.05.009
Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136, 215–233. https://doi.org/0.1016/j.cell.2009.01.002
Beharry, A. W., & Judge, A. R. (2015). Differential expression of HDAC and HAT genes in atrophying skeletal muscle. Muscle and Nerve, 52, 1098–1101. https://doi.org/10.1002/mus.24912
Beharry, A. W., Sandesara, P. B., Roberts, B. M., Ferreira, L. F., Senf, S. M., & Judge, A. R. (2014). HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. Journal of Cell Science, 12, 1441–1453. https://doi.org/10.1242/jcs.136390
Brandl, C. J., Green, N. M., Korczak, B., & MacLennan, D. H. (1986). Two Ca2+ ATPase genes: Homologies and mechanistic implications of deduced amino acid sequences. Cell, 44, 597–607.
Castets, P., Bertrand, A. T., Beuvin, M., Ferry, A., Le Grand, F., Castets, M., … Allamand, V. (2011). Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Human Molecular Genetics, 20, 694–704. https://doi.org/10.1093/hmg/ddq515
Du, P., Zhang, X., Huang, C. C., Jafari, N., Kibbe, W. A., Hou, L., & Lin, S. M. (2010). Comparison of β-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics, 11, 587. https://doi.org/10.1186/1471-2105-11-587
Eisenberg, I., Alexander, M. S., & Kunkel, L. M. (2008). miRNAs in normal and diseased skeletal muscle. Journal of Cellular and Molecular Medicine, 13, 2–11. https://doi.org/10.1111/j.1582-4934.2008.00524
Engel, A. G., Gomez, M. R., & Groover, R. V. (1971). Multicore disease. A recently recognized congenital myopathy associated with multifocal degeneration of muscle fibers. Mayo Clinic Proceedings, 46, 666–681.
Ferreiro, A., Estournet, B., Chateau, D., Romero, N. B., Laroche, C., Odent, S., … Fardeau, M. (2000). Multi-minicore disease-searching for boundries: Phenotype analysis of 38 cases. Annals of Neurolology, 48, 745–757.
Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L., & Kouzarides, T. (2000). DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genetics, 1, 88–91. https://doi.org/10.1038/71750
Ge, Y., & Chen, J. (2011). MicroRNAs in skeletal myogenesis. Cell Cycle, 10, 441–448.
Horstick, E. J., Linsley, J. W., Dowling, J. J., Hauser, M. A., McDonald, K. K., Ashley-Koch, A., … Kuwada, J. Y. (2013). Stac3 is a component of the excitation–contraction coupling machinery and mutated in Native American myopathy. Nature Communications, 4, 1952. https://doi.org/10.1038/ncomms2952
Jungbluth, H., Sewry, C. A., & Muntoni, F. (2011). Core myopathies. Seminars in Pediatric Neurology, 18, 239–249. https://doi.org/10.1010/.spen.2011.10.005
Jungbluth, H., Treves, S., Zorzato, F., Sarkozy, A., Ochala, J., Sewry, C. A., … Muntoni, F. (2018). Congenital myopathies: Disorders of excitation-contraction coupling and muscle contraction. Nature Reviews Neurology, 14, 151–167. https://doi.org/10.1038/nrneurol.2017.191
Kimura, H., & Shiota, K. (2003). Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methlytransferase, Dnmt1. Journal of Biological Chemistry, 278, 4806–4812.
Kishikawa, S., Murata, T., Kimura, H., Shiota, K., & Yokoyama, K. K. (2002). Regulation of transcription of the Dnmt1 gene by Sp1 and Sp3 zinc finger proteins. European Journal of Biochemistry, 269, 2961–2970.
Lee, J., Kosaras, B., Aleyasin, H., Han, J. A., Park, D. S., Ratan, R. R., … Ryu, H. (2006). Role of cyclooxygenase-2 induction by transcription factor Sp1 and Sp3 in neuronal oxidative and DNA damage response. FASEB Journal, 20, 2375–2377. https://doi.org/10.1096/fj.06-5957fje
Liu, F., Pore, N., Kim, M., Voong, K. R., Dowling, M., Maity, A., & Kao, G. D. (2006). Regulation of histone deacetylase 4 expression by the SP family of transcription factors. Molecular Biology of the Cell, 17, 585–597.
Lu, J., McKinsey, T. A., Zhang, C. L., & Olson, E. N. (2000). Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Molecular Cell, 6, 233–244.
MacLennan, D. H., Rice, W. J., & Green, N. M. (1997). The mechanism of Ca2+ transport by serco(endo)plasmic reticulum Ca2+-ATPase. Journal of Biological Chemistry, 272, 28815–28828.
Marino, M., Stoilova, T., Giorgi, C., Bachi, A., Cattaneo, A., Auricchio, A., … Zito, E. (2015). SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal pathology counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Human Molecula Genetics, 24, 1843–1855. https://doi.org/10.1093/hmg/ddu602
Moghadaszadeh, B., Petit, N., Jaillard, C., Brockington, M., Quijano- Roy, S., Merlini, L., … Guicheney, P. (2001). Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nature Genetics, 29, 17–18. https://doi.org/10.1038/ng713
Moresi, V., Carrer, M., Grueter, C. E., Rifky, O. F., Shelton, J. M., Richardson, J. A., … Olson, E. (2012). Histone deacetylase 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 109, 1649–1654. https://doi.org/10.1073/pnas.1121159109
Okamoto, Y., Takashima, H., Higuchi, I., Matsuyama, W., Suehara, M., Nishihira, Y., … Arimura, K. (2006). Molecular mechanism of rigid spine with muscular dystrophy type 1 caused by novel mutations of selenoprotein N gene. Neurogenetics, 7, 175–183.
Petit, N., Lescure, A., Rederstorff, M., Krol, A., Moghadaszadeh, B., Wewer, U. M., & Guicheney, P. (2003). Selenoprotein N: An endoplasmic reticulum glycoprotein with an early developmental expression pattern. Human Molecual Genetics, 12, 1045–1053.
Rederstorff, M., Castets, P., Arbogast, S., Lainé, J., Vassilopoulos, S., Beuvin, M., … Lescure, A. (2011). Increased muscle stress-sensitivity induced by selenoprotein N inactivation in mouse: A mammalian model for SEPN1-related myopathy. PLOS One, 6(8), e23094. https://doi.org/10.1371/journal.pone.0023094
Rios, E., & Pizarro, G. (1991). Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiological Reviews, 71, 849–908.
Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose response analysis using R. PLOS One, 10, e0146021. https://doi.org/10.1371/journal.pone.0146021
Rokach, O., Sekulic-Jablanovic, M., Voermans, N., Wilmhurst, J., Pillay, K., Heytens, L., … Treves, S. (2015). Epigenetic changes as a common trigger of muscle weakness in congenital myopathies. Human Molecular Genetics, 15, 4636–4647. https://doi.org/10.1093/hmg/ddv195
Romero, N. B., & Clarke, N. F. (2013). Congenital myopathies. Handbook of Clinical Neurology, 113, 1321–1336. https://doi.org/10.1016B978-0-444-59565-2.00004-6
Schneider, M. F., & Chandler, W. K. (1972). Voltage dependent charge measurement of skeletal muscle: A possible step in excitation-contraction coupling. Nature, 242, 244–246.
Talmadge, R. J., & Roy, R. R. (1985). Electrophoretic separation of rat skeletal muscle myosin heavy chain isoforms. Journal of Applied Physiology, 75, 2337–2340.
Toral-Ojeda, I., Aldanondo, G., Lasa-Elgarresta, J., Lasa-Fernandez, H., Fernandez-Torron, R., Lopez de Munain, A., & Vallejo-Illarramendi, A. (2016). Calpain 3 deficiency affects SERCA expression and function in the skeletal muscle. Expert Reviews in Molecular Medicine, 18, e7. https://doi.org/10.107/erm.2016.9
Töth, A., Fodor, J., Vincze, J., Olah, T., Juhasz, T., Zakany, R., … Zador, E. (2015). The effect of SERCA1b silencing on the differentiation and calcium homeostasis of C2C12 skeletal muscle cells. PLOS One, 10, e0123583. https://doi.org/10.1371/journal.pone.0123583
Wang, Z., Qin, G., & Zhao, T. C. (2014). Histone deacetylase 4 (HDCA4): Mechanism of regulations and biological functions. Epigenomics, 6, 139–150. https://doi.org/10.2217/epi.13.73
Watanabe, G., Albanese, C., Lee, R. J., Reutens, A., Vairo, G., Henglein, B., & Pestell, R. G. (1998). Inhibition of cyclin D1 kinase activity is associated with E2F-mediated inhibition of cyclin D1 promoter activity through E2F and Sp1. Molecular and Cellular Biology, 18, 3212–3222.
Wettenhall, J. M., & Smyth, G. K. (2004). limmaGUI: A graphical user interface for linear modeling of microarray data. Bioinformatics, 20, 3705–3706. https://doi.org/10.1093/bioinformatics/bth449
Zhang, P., Sun, Q., Zhao, C., Ling, S., Li, Q., & Chang, Y. Z. (2014). HDAC4 protects cells from ER stress induced apoptosis through interaction with ATF4. Cellular Signalling, 26, 556–563. https://doi.org/10.1016/j.cellsig.2013.11.026
Zhou, H., Brockington, M., Jungbluth, H., Monk, D., Stainer, P., Sewry, C. A., … Muntoni, F. (2006). Epigenetic allele silencing unveils recessive RYR1 mutations in core myopathies. American Journal of Human Genetics, 79, 859–868. https://doi.org/10.1086/508500
Zhou, H., Jungbluth, H., Sewry, C. A., Feng, L., Bertini, E., Bushby, K., … Muntoni, F. (2007). Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies. Brain, 130, 2024–2036.
Zorzato, F., Scutari, E., Tegazzin, V., Clementi, E., & Treves, S. (1993). Chlorocresol: An activator of ryanodine receptor-mediated Ca2+ release. Molecular Pharmacology, 44, 1192–1201.