Adipocytokines; Osteoporosis/osteopenia; Saudi postmenopausal women
Abstract :
[en] Osteoporosis and osteopenia has a significant link with substantial fracture risk. Epidemiological data revealed a protective role of adipose tissue on bone biology in postmenopausal osteoporosis. The current study assessed the associations between select adipokines and bone mineral density (BMD) in postmenopausal women. A total of 175 Saudi postmenopausal women were selected and categorized based on their BMD (normal & low-BMD). Circulating levels of select adipokines (adiponectin, resistin, leptin, and adipsin), insulin, 25(OH)D and RANKl were determined using commercially available assay kits. BMD was measured by dual-energy X-ray absorptiometry (DXA). Overall and among low-BMD subjects, adiponectin consistently showed a significant inverse association with BMD (overall -0.34, p < 0.01; low BMD group -0.34, p < 0.01). In multiple regression, adiponectin (-0.29 ± 0.06, p < 0.00) and resistin (-0.08 ± 0.04, p < 0.05) were inversely significant with BMD overall, but after stratification the significance was lost for resistin (-0.05 ± 0.04, p < 0.224) whereas adiponectin remained (-0.22 ± 0.07, p < 0.02) in low-BMD subjects. Adipsin, leptin and lipocalin-2 showed no significant associations. Findings of the present study revealed that only adiponectin showed a significantly strong inverse association with low BMD, suggesting that insulin sensitivity may influence bone health in Arab postmenopausal women.
Disciplines :
Public health, health care sciences & services
Author, co-author :
Ansari, Mohammed Ghouse Ahmed
Hussain, Syed Danish
Wani, Kaiser Ahmed
Yakout, Sobhy M.
Al-Disi, Dara
Alokail, Majed S.
Reginster, Jean-Yves ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
Al-Daghri, Nasser M.
Language :
English
Title :
Influence of bone mineral density in circulating adipokines among postmenopausal Arab women
Agbaht, K., Gurlek, A., Karakaya, J., Bayraktar, M., Circulating adiponectin represents a biomarker of the association between adiposity and bone mineral density. Endocrine 35:3 (2009), 371–379, 10.1007/s12020-009-9158-2.
Al-Daghri, N.M., Al-Attas, O.S., Wani, K., Alnaami, A.M., Sabico, S., Al-Ajlan, A., Alokail, M.S., Sensitivity of various adiposity indices in identifying cardiometabolic diseases in Arab adults. Cardiovasc Diabetol., 14, 2015, 101, 10.1186/s12933-015-0265-5.
Al-Daghri, N.M., Alkharfy, K.M., Alokail, M.S., Alenad, A.M., Al-Attas, O.S., Mohammed, A.K., Albagha, O.M., Assessing the contribution of 38 genetic loci to the risk of type 2 diabetes in the Saudi Arabian population. Clin. Endocrinol. (Oxf) 80:4 (2014), 532–537, 10.1111/cen.12187.
Al-Daghri, N.M., Aziz, I., Yakout, S., Aljohani, N.J., Al-Saleh, Y., Amer, O.E., Al-Badr, F.B., Inflammation as a contributing factor among postmenopausal Saudi women with osteoporosis. Med. (Baltimore), 96(4), 2017, e5780, 10.1097/MD.0000000000005780.
Albala, C., Yanez, M., Devoto, E., Sostin, C., Zeballos, L., Santos, J.L., Obesity as a protective factor for postmenopausal osteoporosis. Retrieved from Int. J. Obes. Relat. Metab. Disord. 20:11 (1996), 1027–1032 https://www.ncbi.nlm.nih.gov/pubmed/8923160.
Ardawi, M.S., Maimany, A.A., Bahksh, T.M., Nasrat, H.A., Milaat, W.A., Al-Raddadi, R.M., Bone mineral density of the spine and femur in healthy Saudis. Osteoporos. Int. 16:1 (2005), 43–55, 10.1007/s00198-004-1639-9.
Cao, J.J., Effects of obesity on bone metabolism. J. Orthop. Surg. Res., 6, 2011, 30, 10.1186/1749-799X-6-30.
Cervellati, C., Bonaccorsi, G., Bergamini, C.M., Fila, E., Greco, P., Valacchi, G., Tisato, V., Association between circulatory levels of adipokines and bone mineral density in postmenopausal women. Menopause 23:9 (2016), 984–992, 10.1097/GME.0000000000000655.
Choy, L.N., Rosen, B.S., Spiegelman, B.M., Adipsin and an endogenous pathway of complement from adipose cells. Retrieved from J. Biol. Chem. 267:18 (1992), 12736–12741 https://www.ncbi.nlm.nih.gov/pubmed/1618777.
Cnop, M., Havel, P.J., Utzschneider, K.M., Carr, D.B., Sinha, M.K., Boyko, E.J., Kahn, S.E., Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 46:4 (2003), 459–469, 10.1007/s00125-003-1074-z.
Cooper, C., Epidemiology of osteoporosis. Retrieved from Osteoporos. Int. 9:Suppl 2 (1999), S2–S8 https://www.ncbi.nlm.nih.gov/pubmed/10525719.
Costa, D., Lazzarini, E., Canciani, B., Giuliani, A., Spano, R., Marozzi, K., Tavella, S., Altered bone development and turnover in transgenic mice over-expressing lipocalin-2 in bone. J. Cell Physiol. 228:11 (2013), 2210–2221, 10.1002/jcp.24391.
D'Anna, R., Baviera, G., Corrado, F., Giordano, D., Recupero, S., Di Benedetto, A., First trimester serum neutrophil gelatinase-associated lipocalin in gestational diabetes. Diabet. Med. 26:12 (2009), 1293–1295, 10.1111/j.1464-5491.2009.02830.x.
Di Carlo, C., Tommaselli, G.A., Di Spiezio Sardo, A., Sammartino, A., Attianese, W., Gargano, V., Nappi, C., Longitudinal evaluation of serum leptin and bone mineral density in early postmenopausal women. Menopause 14:3 Pt 1 (2007), 450–454, 10.1097/01.gme.0000236936.28454.6a.
Ducy, P., Amling, M., Takeda, S., Priemel, M., Schilling, A.F., Beil, F.T., Karsenty, G., Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Retrieved from Cell 100:2 (2000), 197–207 https://www.ncbi.nlm.nih.gov/pubmed/10660043.
El-Desouki, M.I., Osteoporosis in postmenopausal Saudi women using dual x-ray bone densitometry. Retrieved from Saudi Med. J. 24:9 (2003), 953–956 https://www.ncbi.nlm.nih.gov/pubmed/12973476.
El-Desouki, M.I., Sulimani, R.A., High prevalence of osteoporosis in Saudi men. Retrieved from Saudi Med. J. 28:5 (2007), 774–777 https://www.ncbi.nlm.nih.gov/pubmed/17457450.
Ershler, W.B., Harman, S.M., Keller, E.T., Immunologic aspects of osteoporosis. Retrieved from Dev. Comp. Immunol. 21:6 (1997), 487–499 https://www.ncbi.nlm.nih.gov/pubmed/9463782.
Gimble, J.M., Robinson, C.E., Wu, X., Kelly, K.A., The function of adipocytes in the bone marrow stroma: an update. Retrieved from Bone 19:5 (1996), 421–428 https://www.ncbi.nlm.nih.gov/pubmed/8922639.
Gomez, R., Conde, J., Scotece, M., Gomez-Reino, J.J., Lago, F., Gualillo, O., What's new in our understanding of the role of adipokines in rheumatic diseases?. Nat. Rev. Rheumatol. 7:9 (2011), 528–536, 10.1038/nrrheum.2011.107.
Gordeladze, J.O., Drevon, C.A., Syversen, U., Reseland, J.E., Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling. J. Cell. Biochem. 85:4 (2002), 825–836, 10.1002/jcb.10156.
Hiligsmann, M., Cooper, C., Arden, N., Boers, M., Branco, J.C., Luisa Brandi, M., Reginster, J.Y., Health economics in the field of osteoarthritis: an expert's consensus paper from the European society for clinical and economic aspects of osteoporosis and osteoarthritis (ESCEO). Semin. Arthritis Rheum. 43:3 (2013), 303–313, 10.1016/j.semarthrit.2013.07.003.
Kanazawa, I., Adiponectin in metabolic bone disease. Retrieved from Curr. Med. Chem. 19:32 (2012), 5481–5492 https://www.ncbi.nlm.nih.gov/pubmed/22876926.
Kochetkova, E.A., Ugai, L.G., Maistrovskaia, Y.V., Nevzorova, V.A., Adipokines: a possible contribution to vascular and bone remodeling in idiopathic pulmonary arterial hypertension. Calcif. Tissue Int. 100:4 (2017), 325–331, 10.1007/s00223-016-0224-5.
Lim, W.H., Wong, G., Lim, E.M., Byrnes, E., Zhu, K., Devine, A., Lewis, J.R., Circulating lipocalin 2 levels predict fracture-related hospitalizations in elderly women: a prospective cohort study. J. Bone Miner. Res. 30:11 (2015), 2078–2085, 10.1002/jbmr.2546.
Luo, X.H., Guo, L.J., Yuan, L.Q., Xie, H., Zhou, H.D., Wu, X.P., Liao, E.Y., Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp. Cell Res. 309:1 (2005), 99–109, 10.1016/j.yexcr.2005.05.021.
Makris, K., Rizos, D., Kafkas, N., Haliassos, A., Neurophil gelatinase-associated lipocalin as a new biomarker in laboratory medicine. Clin. Chem. Lab. Med. 50:9 (2012), 1519–1532, 10.1515/cclm-2012-0227.
Maria, S., Witt-Enderby, P.A., Melatonin effects on bone: potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures. J. Pineal Res. 56:2 (2014), 115–125, 10.1111/jpi.12116.
Mohiti-Ardekani, J., Soleymani-Salehabadi, H., Owlia, M.B., Mohiti, A., Relationships between serum adipocyte hormones (adiponectin, leptin, resistin), bone mineral density and bone metabolic markers in osteoporosis patients. J. Bone Min. Metabol. 32:4 (2014), 400–404, 10.1007/s00774-013-0511-4.
Nabipour, I., Larijani, B., Vahdat, K., Assadi, M., Jafari, S.M., Ahmadi, E., Amiri, Z., Relationships among serum receptor of nuclear factor-kappaB ligand, osteoprotegerin, high-sensitivity C-reactive protein, and bone mineral density in postmenopausal women: osteoimmunity versus osteoinflammatory. Menopause 16:5 (2009), 950–955, 10.1097/gme.0b013e3181a181b8.
Pasco, J.A., Seeman, E., Henry, M.J., Merriman, E.N., Nicholson, G.C., Kotowicz, M.A., The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos. Int. 17:9 (2006), 1404–1409, 10.1007/s00198-006-0135-9.
Pfeilschifter, J., Koditz, R., Pfohl, M., Schatz, H., Changes in proinflammatory cytokine activity after menopause. Endocr. Rev. 23:1 (2002), 90–119, 10.1210/edrv.23.1.0456.
Richards, J.B., Valdes, A.M., Burling, K., Perks, U.C., Spector, T.D., Serum adiponectin and bone mineral density in women. J. Clin. Endocrinol. Metab. 92:4 (2007), 1517–1523, 10.1210/jc.2006-2097.
Rosen, C.J., Klibanski, A., Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am. J. Med. 122:5 (2009), 409–414, 10.1016/j.amjmed.2008.11.027.
Sadat-Ali, M., AlElq, A., Osteoporosis among male Saudi Arabs: a pilot study. Ann. Saudi Med. 26:6 (2006), 450–454, 10.5144/0256-4947.2006.450.
Sandhya, N., Gokulakrishnan, K., Ravikumar, R., Mohan, V., Balasubramanyam, M., Association of hypoadiponectinemia with hypoglutathionemia in NAFLD subjects with and without type 2 diabetes. Dis. Markers 29:5 (2010), 213–221, 10.3233/DMA-2010-0743.
Shinoda, Y., Yamaguchi, M., Ogata, N., Akune, T., Kubota, N., Yamauchi, T., Kawaguchi, H., Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J. Cell. Biochem. 99:1 (2006), 196–208, 10.1002/jcb.20890.
Sodi, R., Hazell, M.J., Durham, B.H., Rees, C., Ranganath, L.R., Fraser, W.D., The circulating concentration and ratio of total and high molecular weight adiponectin in post-menopausal women with and without osteoporosis and its association with body mass index and biochemical markers of bone metabolism. Clin. Biochem. 42:13–14 (2009), 1375–1380, 10.1016/j.clinbiochem.2009.06.003.
Sun, Y., Yokoi, K., Li, H., Gao, J., Hu, L., Liu, B., Zhang, W., NGAL expression is elevated in both colorectal adenoma-carcinoma sequence and cancer progression and enhances tumorigenesis in xenograft mouse models. Clin. Cancer Res. 17:13 (2011), 4331–4340, 10.1158/1078-0432.CCR-11-0226.
Tanna, N., Patel, K., Moore, A.E., Dulnoan, D., Edwards, S., Hampson, G., The relationship between circulating adiponectin, leptin and vaspin with bone mineral density (BMD), arterial calcification and stiffness: a cross-sectional study in post-menopausal women. J. Endocrinol. Invest. 40:12 (2017), 1345–1353, 10.1007/s40618-017-0711-1.
Uzum, A.K., Aydin, M.M., Tutuncu, Y., Omer, B., Kiyan, E., Alagol, F., Serum ghrelin and adiponectin levels are increased but serum leptin level is unchanged in low weight chronic obstructive pulmonary disease patients. Eur. J. Intern. Med. 25:4 (2014), 364–369, 10.1016/j.ejim.2013.02.012.
White, R.T., Damm, D., Hancock, N., Rosen, B.S., Lowell, B.B., Usher, P., Spiegelman, B.M., Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. Retrieved from J. Biol. Chem. 267:13 (1992), 9210–9213 https://www.ncbi.nlm.nih.gov/pubmed/1374388.
Wiren, K.M., Hashimoto, J.G., Semirale, A.A., Zhang, X.W., Bone vs. fat: embryonic origin of progenitors determines response to androgen in adipocytes and osteoblasts. Bone 49:4 (2011), 662–672, 10.1016/j.bone.2011.06.010.
Wu, G., Li, H., Fang, Q., Jiang, S., Zhang, L., Zhang, J., Jia, W., Elevated circulating lipocalin-2 levels independently predict incident cardiovascular events in men in a population-based cohort. Arterioscler. Thromb. Vasc. Biol. 34:11 (2014), 2457–2464, 10.1161/ATVBAHA.114.303718.
Yan, Q.W., Yang, Q., Mody, N., Graham, T.E., Hsu, C.H., Xu, Z., Rosen, E.D., The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56:10 (2007), 2533–2540, 10.2337/db07-0007.
Zhao, L.J., Jiang, H., Papasian, C.J., Maulik, D., Drees, B., Hamilton, J., Deng, H.W., Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J. Bone Miner. Res. 23:1 (2008), 17–29, 10.1359/jbmr.070813.