Adipocytokines; Osteoporosis/osteopenia; Saudi postmenopausal women
Abstract :
[en] Osteoporosis and osteopenia has a significant link with substantial fracture risk. Epidemiological data revealed a protective role of adipose tissue on bone biology in postmenopausal osteoporosis. The current study assessed the associations between select adipokines and bone mineral density (BMD) in postmenopausal women. A total of 175 Saudi postmenopausal women were selected and categorized based on their BMD (normal & low-BMD). Circulating levels of select adipokines (adiponectin, resistin, leptin, and adipsin), insulin, 25(OH)D and RANKl were determined using commercially available assay kits. BMD was measured by dual-energy X-ray absorptiometry (DXA). Overall and among low-BMD subjects, adiponectin consistently showed a significant inverse association with BMD (overall -0.34, p < 0.01; low BMD group -0.34, p < 0.01). In multiple regression, adiponectin (-0.29 ± 0.06, p < 0.00) and resistin (-0.08 ± 0.04, p < 0.05) were inversely significant with BMD overall, but after stratification the significance was lost for resistin (-0.05 ± 0.04, p < 0.224) whereas adiponectin remained (-0.22 ± 0.07, p < 0.02) in low-BMD subjects. Adipsin, leptin and lipocalin-2 showed no significant associations. Findings of the present study revealed that only adiponectin showed a significantly strong inverse association with low BMD, suggesting that insulin sensitivity may influence bone health in Arab postmenopausal women.
Disciplines :
Public health, health care sciences & services
Author, co-author :
Ansari, Mohammed Ghouse Ahmed
Hussain, Syed Danish
Wani, Kaiser Ahmed
Yakout, Sobhy M.
Al-Disi, Dara
Alokail, Majed S.
Reginster, Jean-Yves ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
Al-Daghri, Nasser M.
Language :
English
Title :
Influence of bone mineral density in circulating adipokines among postmenopausal Arab women
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Agbaht, K., Gurlek, A., Karakaya, J., Bayraktar, M., Circulating adiponectin represents a biomarker of the association between adiposity and bone mineral density. Endocrine 35:3 (2009), 371–379, 10.1007/s12020-009-9158-2.
Al-Daghri, N.M., Al-Attas, O.S., Wani, K., Alnaami, A.M., Sabico, S., Al-Ajlan, A., Alokail, M.S., Sensitivity of various adiposity indices in identifying cardiometabolic diseases in Arab adults. Cardiovasc Diabetol., 14, 2015, 101, 10.1186/s12933-015-0265-5.
Al-Daghri, N.M., Alkharfy, K.M., Alokail, M.S., Alenad, A.M., Al-Attas, O.S., Mohammed, A.K., Albagha, O.M., Assessing the contribution of 38 genetic loci to the risk of type 2 diabetes in the Saudi Arabian population. Clin. Endocrinol. (Oxf) 80:4 (2014), 532–537, 10.1111/cen.12187.
Al-Daghri, N.M., Aziz, I., Yakout, S., Aljohani, N.J., Al-Saleh, Y., Amer, O.E., Al-Badr, F.B., Inflammation as a contributing factor among postmenopausal Saudi women with osteoporosis. Med. (Baltimore), 96(4), 2017, e5780, 10.1097/MD.0000000000005780.
Albala, C., Yanez, M., Devoto, E., Sostin, C., Zeballos, L., Santos, J.L., Obesity as a protective factor for postmenopausal osteoporosis. Retrieved from Int. J. Obes. Relat. Metab. Disord. 20:11 (1996), 1027–1032 https://www.ncbi.nlm.nih.gov/pubmed/8923160.
Ardawi, M.S., Maimany, A.A., Bahksh, T.M., Nasrat, H.A., Milaat, W.A., Al-Raddadi, R.M., Bone mineral density of the spine and femur in healthy Saudis. Osteoporos. Int. 16:1 (2005), 43–55, 10.1007/s00198-004-1639-9.
Cao, J.J., Effects of obesity on bone metabolism. J. Orthop. Surg. Res., 6, 2011, 30, 10.1186/1749-799X-6-30.
Cervellati, C., Bonaccorsi, G., Bergamini, C.M., Fila, E., Greco, P., Valacchi, G., Tisato, V., Association between circulatory levels of adipokines and bone mineral density in postmenopausal women. Menopause 23:9 (2016), 984–992, 10.1097/GME.0000000000000655.
Choy, L.N., Rosen, B.S., Spiegelman, B.M., Adipsin and an endogenous pathway of complement from adipose cells. Retrieved from J. Biol. Chem. 267:18 (1992), 12736–12741 https://www.ncbi.nlm.nih.gov/pubmed/1618777.
Cnop, M., Havel, P.J., Utzschneider, K.M., Carr, D.B., Sinha, M.K., Boyko, E.J., Kahn, S.E., Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 46:4 (2003), 459–469, 10.1007/s00125-003-1074-z.
Cooper, C., Epidemiology of osteoporosis. Retrieved from Osteoporos. Int. 9:Suppl 2 (1999), S2–S8 https://www.ncbi.nlm.nih.gov/pubmed/10525719.
Costa, D., Lazzarini, E., Canciani, B., Giuliani, A., Spano, R., Marozzi, K., Tavella, S., Altered bone development and turnover in transgenic mice over-expressing lipocalin-2 in bone. J. Cell Physiol. 228:11 (2013), 2210–2221, 10.1002/jcp.24391.
D'Anna, R., Baviera, G., Corrado, F., Giordano, D., Recupero, S., Di Benedetto, A., First trimester serum neutrophil gelatinase-associated lipocalin in gestational diabetes. Diabet. Med. 26:12 (2009), 1293–1295, 10.1111/j.1464-5491.2009.02830.x.
Di Carlo, C., Tommaselli, G.A., Di Spiezio Sardo, A., Sammartino, A., Attianese, W., Gargano, V., Nappi, C., Longitudinal evaluation of serum leptin and bone mineral density in early postmenopausal women. Menopause 14:3 Pt 1 (2007), 450–454, 10.1097/01.gme.0000236936.28454.6a.
Ducy, P., Amling, M., Takeda, S., Priemel, M., Schilling, A.F., Beil, F.T., Karsenty, G., Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Retrieved from Cell 100:2 (2000), 197–207 https://www.ncbi.nlm.nih.gov/pubmed/10660043.
El-Desouki, M.I., Osteoporosis in postmenopausal Saudi women using dual x-ray bone densitometry. Retrieved from Saudi Med. J. 24:9 (2003), 953–956 https://www.ncbi.nlm.nih.gov/pubmed/12973476.
El-Desouki, M.I., Sulimani, R.A., High prevalence of osteoporosis in Saudi men. Retrieved from Saudi Med. J. 28:5 (2007), 774–777 https://www.ncbi.nlm.nih.gov/pubmed/17457450.
Ershler, W.B., Harman, S.M., Keller, E.T., Immunologic aspects of osteoporosis. Retrieved from Dev. Comp. Immunol. 21:6 (1997), 487–499 https://www.ncbi.nlm.nih.gov/pubmed/9463782.
Gimble, J.M., Robinson, C.E., Wu, X., Kelly, K.A., The function of adipocytes in the bone marrow stroma: an update. Retrieved from Bone 19:5 (1996), 421–428 https://www.ncbi.nlm.nih.gov/pubmed/8922639.
Gomez, R., Conde, J., Scotece, M., Gomez-Reino, J.J., Lago, F., Gualillo, O., What's new in our understanding of the role of adipokines in rheumatic diseases?. Nat. Rev. Rheumatol. 7:9 (2011), 528–536, 10.1038/nrrheum.2011.107.
Gordeladze, J.O., Drevon, C.A., Syversen, U., Reseland, J.E., Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling. J. Cell. Biochem. 85:4 (2002), 825–836, 10.1002/jcb.10156.
Hiligsmann, M., Cooper, C., Arden, N., Boers, M., Branco, J.C., Luisa Brandi, M., Reginster, J.Y., Health economics in the field of osteoarthritis: an expert's consensus paper from the European society for clinical and economic aspects of osteoporosis and osteoarthritis (ESCEO). Semin. Arthritis Rheum. 43:3 (2013), 303–313, 10.1016/j.semarthrit.2013.07.003.
Kanazawa, I., Adiponectin in metabolic bone disease. Retrieved from Curr. Med. Chem. 19:32 (2012), 5481–5492 https://www.ncbi.nlm.nih.gov/pubmed/22876926.
Kochetkova, E.A., Ugai, L.G., Maistrovskaia, Y.V., Nevzorova, V.A., Adipokines: a possible contribution to vascular and bone remodeling in idiopathic pulmonary arterial hypertension. Calcif. Tissue Int. 100:4 (2017), 325–331, 10.1007/s00223-016-0224-5.
Lim, W.H., Wong, G., Lim, E.M., Byrnes, E., Zhu, K., Devine, A., Lewis, J.R., Circulating lipocalin 2 levels predict fracture-related hospitalizations in elderly women: a prospective cohort study. J. Bone Miner. Res. 30:11 (2015), 2078–2085, 10.1002/jbmr.2546.
Luo, X.H., Guo, L.J., Yuan, L.Q., Xie, H., Zhou, H.D., Wu, X.P., Liao, E.Y., Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp. Cell Res. 309:1 (2005), 99–109, 10.1016/j.yexcr.2005.05.021.
Makris, K., Rizos, D., Kafkas, N., Haliassos, A., Neurophil gelatinase-associated lipocalin as a new biomarker in laboratory medicine. Clin. Chem. Lab. Med. 50:9 (2012), 1519–1532, 10.1515/cclm-2012-0227.
Maria, S., Witt-Enderby, P.A., Melatonin effects on bone: potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures. J. Pineal Res. 56:2 (2014), 115–125, 10.1111/jpi.12116.
Mohiti-Ardekani, J., Soleymani-Salehabadi, H., Owlia, M.B., Mohiti, A., Relationships between serum adipocyte hormones (adiponectin, leptin, resistin), bone mineral density and bone metabolic markers in osteoporosis patients. J. Bone Min. Metabol. 32:4 (2014), 400–404, 10.1007/s00774-013-0511-4.
Nabipour, I., Larijani, B., Vahdat, K., Assadi, M., Jafari, S.M., Ahmadi, E., Amiri, Z., Relationships among serum receptor of nuclear factor-kappaB ligand, osteoprotegerin, high-sensitivity C-reactive protein, and bone mineral density in postmenopausal women: osteoimmunity versus osteoinflammatory. Menopause 16:5 (2009), 950–955, 10.1097/gme.0b013e3181a181b8.
Pasco, J.A., Seeman, E., Henry, M.J., Merriman, E.N., Nicholson, G.C., Kotowicz, M.A., The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos. Int. 17:9 (2006), 1404–1409, 10.1007/s00198-006-0135-9.
Pfeilschifter, J., Koditz, R., Pfohl, M., Schatz, H., Changes in proinflammatory cytokine activity after menopause. Endocr. Rev. 23:1 (2002), 90–119, 10.1210/edrv.23.1.0456.
Richards, J.B., Valdes, A.M., Burling, K., Perks, U.C., Spector, T.D., Serum adiponectin and bone mineral density in women. J. Clin. Endocrinol. Metab. 92:4 (2007), 1517–1523, 10.1210/jc.2006-2097.
Rosen, C.J., Klibanski, A., Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am. J. Med. 122:5 (2009), 409–414, 10.1016/j.amjmed.2008.11.027.
Sadat-Ali, M., AlElq, A., Osteoporosis among male Saudi Arabs: a pilot study. Ann. Saudi Med. 26:6 (2006), 450–454, 10.5144/0256-4947.2006.450.
Sandhya, N., Gokulakrishnan, K., Ravikumar, R., Mohan, V., Balasubramanyam, M., Association of hypoadiponectinemia with hypoglutathionemia in NAFLD subjects with and without type 2 diabetes. Dis. Markers 29:5 (2010), 213–221, 10.3233/DMA-2010-0743.
Shinoda, Y., Yamaguchi, M., Ogata, N., Akune, T., Kubota, N., Yamauchi, T., Kawaguchi, H., Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J. Cell. Biochem. 99:1 (2006), 196–208, 10.1002/jcb.20890.
Sodi, R., Hazell, M.J., Durham, B.H., Rees, C., Ranganath, L.R., Fraser, W.D., The circulating concentration and ratio of total and high molecular weight adiponectin in post-menopausal women with and without osteoporosis and its association with body mass index and biochemical markers of bone metabolism. Clin. Biochem. 42:13–14 (2009), 1375–1380, 10.1016/j.clinbiochem.2009.06.003.
Sun, Y., Yokoi, K., Li, H., Gao, J., Hu, L., Liu, B., Zhang, W., NGAL expression is elevated in both colorectal adenoma-carcinoma sequence and cancer progression and enhances tumorigenesis in xenograft mouse models. Clin. Cancer Res. 17:13 (2011), 4331–4340, 10.1158/1078-0432.CCR-11-0226.
Tanna, N., Patel, K., Moore, A.E., Dulnoan, D., Edwards, S., Hampson, G., The relationship between circulating adiponectin, leptin and vaspin with bone mineral density (BMD), arterial calcification and stiffness: a cross-sectional study in post-menopausal women. J. Endocrinol. Invest. 40:12 (2017), 1345–1353, 10.1007/s40618-017-0711-1.
Uzum, A.K., Aydin, M.M., Tutuncu, Y., Omer, B., Kiyan, E., Alagol, F., Serum ghrelin and adiponectin levels are increased but serum leptin level is unchanged in low weight chronic obstructive pulmonary disease patients. Eur. J. Intern. Med. 25:4 (2014), 364–369, 10.1016/j.ejim.2013.02.012.
White, R.T., Damm, D., Hancock, N., Rosen, B.S., Lowell, B.B., Usher, P., Spiegelman, B.M., Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. Retrieved from J. Biol. Chem. 267:13 (1992), 9210–9213 https://www.ncbi.nlm.nih.gov/pubmed/1374388.
Wiren, K.M., Hashimoto, J.G., Semirale, A.A., Zhang, X.W., Bone vs. fat: embryonic origin of progenitors determines response to androgen in adipocytes and osteoblasts. Bone 49:4 (2011), 662–672, 10.1016/j.bone.2011.06.010.
Wu, G., Li, H., Fang, Q., Jiang, S., Zhang, L., Zhang, J., Jia, W., Elevated circulating lipocalin-2 levels independently predict incident cardiovascular events in men in a population-based cohort. Arterioscler. Thromb. Vasc. Biol. 34:11 (2014), 2457–2464, 10.1161/ATVBAHA.114.303718.
Yan, Q.W., Yang, Q., Mody, N., Graham, T.E., Hsu, C.H., Xu, Z., Rosen, E.D., The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56:10 (2007), 2533–2540, 10.2337/db07-0007.
Zhao, L.J., Jiang, H., Papasian, C.J., Maulik, D., Drees, B., Hamilton, J., Deng, H.W., Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J. Bone Miner. Res. 23:1 (2008), 17–29, 10.1359/jbmr.070813.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.