data coverage; data integration; data representativeness; functional diversity; plant traits; TRY plant trait database
Abstract :
[en] Abstract Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Kattge, Jens
Bönisch, Gerhard
Díaz, Sandra
Lavorel, Sandra
Prentice, Iain Colin
Leadley, Paul
Tautenhahn, Susanne
Werner, Gijsbert D. A.
Aakala, Tuomas
Abedi, Mehdi
Acosta, Alicia T. R.
Adamidis, George C.
Adamson, Kairi
Aiba, Masahiro
Albert, Cécile H.
Alcántara, Julio M.
Alcázar C, Carolina
Aleixo, Izabela
Ali, Hamada
Amiaud, Bernard
Ammer, Christian
Amoroso, Mariano M.
Anand, Madhur
Anderson, Carolyn
Anten, Niels
Antos, Joseph
Apgaua, Deborah Mattos Guimarães
Ashman, Tia-Lynn
Asmara, Degi Harja
Asner, Gregory P.
Aspinwall, Michael
Atkin, Owen
Aubin, Isabelle
Baastrup-Spohr, Lars
Bahalkeh, Khadijeh
Bahn, Michael
Baker, Timothy
Baker, William J.
Bakker, Jan P.
Baldocchi, Dennis
Baltzer, Jennifer
Banerjee, Arindam
Baranger, Anne
Barlow, Jos
Barneche, Diego R.
Baruch, Zdravko
Bastianelli, Denis
Battles, John
Bauerle, William
Bauters, Marijn
Bazzato, Erika
Beckmann, Michael
Beeckman, Hans
Beierkuhnlein, Carl
Bekker, Renee
Belfry, Gavin
Belluau, Michael
Beloiu, Mirela
Benavides, Raquel
Benomar, Lahcen
Berdugo-Lattke, Mary Lee
Berenguer, Erika
Bergamin, Rodrigo
Bergmann, Joana
Bergmann Carlucci, Marcos
Berner, Logan
Bernhardt-Römermann, Markus
Bigler, Christof
Bjorkman, Anne D.
Blackman, Chris
Blanco, Carolina
Blonder, Benjamin
Blumenthal, Dana
Bocanegra-González, Kelly T.
Boeckx, Pascal
Bohlman, Stephanie
Böhning-Gaese, Katrin
Boisvert-Marsh, Laura
Bond, William
Bond-Lamberty, Ben
Boom, Arnoud
Boonman, Coline C. F.
Bordin, Kauane
Boughton, Elizabeth H.
Boukili, Vanessa
Bowman, David M. J. S.
Bravo, Sandra
Brendel, Marco Richard
Broadley, Martin R.
Brown, Kerry A.
Bruelheide, Helge
Brumnich, Federico
Bruun, Hans Henrik
Bruy, David
Buchanan, Serra W.
Bucher, Solveig Franziska
Buchmann, Nina
Buitenwerf, Robert
Bunker, Daniel E.
Bürger, Jana
Burrascano, Sabina
Burslem, David F. R. P.
Butterfield, Bradley J.
Byun, Chaeho
Marques, Marcia
Scalon, Marina C.
Caccianiga, Marco
Cadotte, Marc
Cailleret, Maxime
Camac, James
Camarero, Jesús Julio
Campany, Courtney
Campetella, Giandiego
Campos, Juan Antonio
Cano-Arboleda, Laura
Canullo, Roberto
Carbognani, Michele
Carvalho, Fabio
Casanoves, Fernando
Castagneyrol, Bastien
Catford, Jane A.
Cavender-Bares, Jeannine
Cerabolini, Bruno E. L.
Cervellini, Marco
Chacón-Madrigal, Eduardo
Chapin, Kenneth
Chapin, F. Stuart
Chelli, Stefano
Chen, Si-Chong
Chen, Anping
Cherubini, Paolo
Chianucci, Francesco
Choat, Brendan
Chung, Kyong-Sook
Chytrý, Milan
Ciccarelli, Daniela
Coll, Lluís
Collins, Courtney G.
Conti, Luisa
Coomes, David
Cornelissen, Johannes H. C.
Cornwell, William K.
Corona, Piermaria
Coyea, Marie
Craine, Joseph
Craven, Dylan
Cromsigt, Joris P. G. M.
Csecserits, Anikó
Cufar, Katarina
Cuntz, Matthias
da Silva, Ana Carolina
Dahlin, Kyla M.
Dainese, Matteo
Dalke, Igor
Dalle Fratte, Michele
Dang-Le, Anh Tuan
Danihelka, Jirí
Dannoura, Masako
Dawson, Samantha
de Beer, Arend Jacobus
De Frutos, Angel
De Long, Jonathan R.
Dechant, Benjamin
Delagrange, Sylvain
Delpierre, Nicolas
Derroire, Géraldine
Dias, Arildo S.
Diaz-Toribio, Milton Hugo
Dimitrakopoulos, Panayiotis G.
Dobrowolski, Mark
Doktor, Daniel
Dřevojan, Pavel
Dong, Ning
Dransfield, John
Dressler, Stefan
Duarte, Leandro
Ducouret, Emilie
Dullinger, Stefan
Durka, Walter
Duursma, Remko
Dymova, Olga
E-Vojtkó, Anna
Eckstein, Rolf Lutz
Ejtehadi, Hamid
Elser, James
Emilio, Thaise
Engemann, Kristine
Erfanian, Mohammad Bagher
Erfmeier, Alexandra
Esquivel-Muelbert, Adriane
Esser, Gerd
Estiarte, Marc
Domingues, Tomas F.
Fagan, William F.
Fagúndez, Jaime
Falster, Daniel S.
Fan, Ying
Fang, Jingyun
Farris, Emmanuele
Fazlioglu, Fatih
Feng, Yanhao
Fernandez-Mendez, Fernando
Ferrara, Carlotta
Ferreira, Joice
Fidelis, Alessandra
Finegan, Bryan
Firn, Jennifer
Flowers, Timothy J.
Flynn, Dan F. B.
Fontana, Veronika
Forey, Estelle
Forgiarini, Cristiane
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Frangipani, Marcelo
Frank, Dorothea
Frenette-Dussault, Cedric
Freschet, Grégoire T.
Fry, Ellen L.
Fyllas, Nikolaos M.
Mazzochini, Guilherme G.
Gachet, Sophie
Gallagher, Rachael
Ganade, Gislene
Ganga, Francesca
García-Palacios, Pablo
Gargaglione, Verónica
Garnier, Eric
Garrido, Jose Luis
de Gasper, André Luís
Gea-Izquierdo, Guillermo
Gibson, David
Gillison, Andrew N.
Giroldo, Aelton
Glasenhardt, Mary-Claire
Gleason, Sean
Gliesch, Mariana
Goldberg, Emma
Göldel, Bastian
Gonzalez-Akre, Erika
Gonzalez-Andujar, Jose L.
González-Melo, Andrés
González-Robles, Ana
Graae, Bente Jessen
Granda, Elena
Graves, Sarah
Green, Walton A.
Gregor, Thomas
Gross, Nicolas
Guerin, Greg R.
Günther, Angela
Gutiérrez, Alvaro G.
Haddock, Lillie
Haines, Anna
Hall, Jefferson
Hambuckers, Alain ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Han, Wenxuan
Harrison, Sandy P.
Hattingh, Wesley
Hawes, Joseph E.
He, Tianhua
He, Pengcheng
Heberling, Jacob Mason
Helm, Aveliina
Hempel, Stefan
Hentschel, Jörn
Hérault, Bruno
Hereş, Ana-Maria
Herz, Katharina
Heuertz, Myriam
Hickler, Thomas
Hietz, Peter
Higuchi, Pedro
Hipp, Andrew L.
Hirons, Andrew
Hock, Maria
Hogan, James Aaron
Holl, Karen
Honnay, Olivier
Hornstein, Daniel
Hou, Enqing
Hough-Snee, Nate
Hovstad, Knut Anders
Ichie, Tomoaki
Igić, Boris
Illa, Estela
Isaac, Marney
Ishihara, Masae
Ivanov, Leonid
Ivanova, Larissa
Iversen, Colleen M.
Izquierdo, Jordi
Jackson, Robert B.
Jackson, Benjamin
Jactel, Hervé
Jagodzinski, Andrzej M.
Jandt, Ute
Jansen, Steven
Jenkins, Thomas
Jentsch, Anke
Jespersen, Jens Rasmus Plantener
Jiang, Guo-Feng
Johansen, Jesper Liengaard
Johnson, David
Jokela, Eric J.
Joly, Carlos Alfredo
Jordan, Gregory J.
Joseph, Grant Stuart
Junaedi, Decky
Junker, Robert R.
Justes, Eric
Kabzems, Richard
Kane, Jeffrey
Kaplan, Zdenek
Kattenborn, Teja
Kavelenova, Lyudmila
Kearsley, Elizabeth
Kempel, Anne
Kenzo, Tanaka
Kerkhoff, Andrew
Khalil, Mohammed I.
Kinlock, Nicole L.
Kissling, Wilm Daniel
Kitajima, Kaoru
Kitzberger, Thomas
Kjøller, Rasmus
Klein, Tamir
Kleyer, Michael
Klimešová, Jitka
Klipel, Joice
Kloeppel, Brian
Klotz, Stefan
Knops, Johannes M. H.
Kohyama, Takashi
Koike, Fumito
Kollmann, Johannes
Komac, Benjamin
Komatsu, Kimberly
König, Christian
Kraft, Nathan J. B.
Kramer, Koen
Kreft, Holger
Kühn, Ingolf
Kumarathunge, Dushan
Kuppler, Jonas
Kurokawa, Hiroko
Kurosawa, Yoko
Kuyah, Shem
Laclau, Jean-Paul
Lafleur, Benoit
Lallai, Erik
Lamb, Eric
Lamprecht, Andrea
Larkin, Daniel J.
Laughlin, Daniel
Le Bagousse-Pinguet, Yoann
le Maire, Guerric
le Roux, Peter C.
le Roux, Elizabeth
Lee, Tali
Lens, Frederic
Lewis, Simon L.
Lhotsky, Barbara
Li, Yuanzhi
Li, Xine
Lichstein, Jeremy W.
Liebergesell, Mario
Lim, Jun Ying
Lin, Yan-Shih
Linares, Juan Carlos
Liu, Chunjiang
Liu, Daijun
Liu, Udayangani
Livingstone, Stuart
Llusià, Joan
Lohbeck, Madelon
López-García, Álvaro
Lopez-Gonzalez, Gabriela
Lososová, Zdeňka
Louault, Frédérique
Lukács, Balázs A.
Lukeš, Petr
Luo, Yunjian
Lussu, Michele
Ma, Siyan
Maciel Rabelo Pereira, Camilla
Mack, Michelle
Maire, Vincent
Mäkelä, Annikki
Mäkinen, Harri
Malhado, Ana Claudia Mendes
Mallik, Azim
Manning, Peter
Manzoni, Stefano
Marchetti, Zuleica
Marchino, Luca
Marcilio-Silva, Vinicius
Marcon, Eric
Marignani, Michela
Markesteijn, Lars
Martin, Adam
Martínez-Garza, Cristina
Martínez-Vilalta, Jordi
Mašková, Tereza
Mason, Kelly
Mason, Norman
Massad, Tara Joy
Masse, Jacynthe
Mayrose, Itay
McCarthy, James
McCormack, M. Luke
McCulloh, Katherine
McFadden, Ian R.
McGill, Brian J.
McPartland, Mara Y.
Medeiros, Juliana S.
Medlyn, Belinda
Meerts, Pierre
Mehrabi, Zia
Meir, Patrick
Melo, Felipe P. L.
Mencuccini, Maurizio
Meredieu, Céline
Messier, Julie
Mészáros, Ilona
Metsaranta, Juha
Michaletz, Sean T.
Michelaki, Chrysanthi
Migalina, Svetlana
Milla, Ruben
Miller, Jesse E. D.
Minden, Vanessa
Ming, Ray
Mokany, Karel
Moles, Angela T.
Molnár V, Attila
Molofsky, Jane
Molz, Martin
Montgomery, Rebecca A.
Monty, Arnaud ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aerts, R., & Chapin, F. S. (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1–67. https://doi.org/10.1016/s0065-2504(08)60016-1
Akhmetzhanova, A. A., Soudzilovskaia, N. A., Onipchenko, V. G., Cornwell, W. K., Agafonov, V. A., Selivanov, I. A., & Cornelissen, J. H. C. (2012). A rediscovered treasure: Mycorrhizal intensity database for 3000 vascular plant species across the former Soviet Union. Ecology, 93(3), 689–690. https://doi.org/10.1890/11-1749.1
Ali, A., Lin, S. L., He, J. K., Kong, F. M., Yu, J. H., & Jiang, H. S. (2019). Big-sized trees overrule remaining trees' attributes and species richness as determinants of aboveground biomass in tropical forests. Global Change Biology, 25(8), 2810–2824. https://doi.org/10.1111/gcb.14707
Baraloto, C., Timothy Paine, C. E. T., Patino, S., Bonal, D., Herault, B., & Chave, J. (2010). Functional trait variation and sampling strategies in species-rich plant communities. Functional Ecology, 24(1), 208–216. https://doi.org/10.1111/j.1365-2435.2009.01600.x
Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Rüger, N., Beck, P. S. A., … Weiher, E. (2018). Plant functional trait change across a warming tundra biome. Nature, 562(7725), 57–62. https://doi.org/10.1038/s41586-018-0563-7
Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Thomas, H. J. D., Alatalo, J. M., … Zamin, T. (2018). Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 27(12), 1402–1411. https://doi.org/10.1111/geb.12821
Boeddinghaus, R. S., Marhan, S., Berner, D., Boch, S., Fischer, M., Hölzel, N., … Manning, P. (2019). Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. Journal of Ecology, 107(5), 2197–2210. https://doi.org/10.1111/1365-2745.13182
Boyle, B., Hopkins, N., Lu, Z., Raygoza Garay, J. A., Mozzherin, D., Rees, T., … Enquist, B. J. (2013). The taxonomic name resolution service: An online tool for automated standardization of plant names. BMC Bioinformatics, 14(1). https://doi.org/10.1186/1471-2105-14-16
Bruelheide, H., Dengler, J., Jiménez-Alfaro, B., Purschke, O., Hennekens, S. M., Chytrý, M., … Zverev, A. (2019). sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 30(2), 161–186. https://doi.org/10.1111/jvs.12710
Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S. M., … Jandt, U. (2018). Global trait–environment relationships of plant communities. Nature Ecology & Evolution, 2(12), 1906–1917. https://doi.org/10.1038/s41559-018-0699-8
Butler, E. E., Datta, A., Flores-Moreno, H., Chen, M., Wythers, K. R., Fazayeli, F., … Reich, P. B. (2017). Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 114(51), E10937–E10946. https://doi.org/10.1073/pnas.1708984114
Craine, J. M., Elmore, A. J., Wang, L., Aranibar, J., Bauters, M., Boeckx, P., … Zmudczyńska-Skarbek, K. (2018). Isotopic evidence for oligotrophication of terrestrial ecosystems. Nature Ecology & Evolution, 2(11), 1735–1744. https://doi.org/10.1038/s41559-018-0694-0
Craven, D., Eisenhauer, N., Pearse, W. D., Hautier, Y., Isbell, F., Roscher, C., … Manning, P. (2018). Multiple facets of biodiversity drive the diversity–stability relationship. Nature Ecology & Evolution, 2(10), 1579–1587. https://doi.org/10.1038/s41559-018-0647-7
deVries, F. T., Manning, P., Tallowin, J. R. B., Mortimer, S. R., Pilgrim, E. S., Harrison, K. A., … Bardgett, R. D. (2012). Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecology Letters, 15(11), 1230–1239. https://doi.org/10.1111/j.1461-0248.2012.01844.x
Delgado-Baquerizo, M., Fry, E. L., Eldridge, D. J., deVries, F. T., Manning, P., Hamonts, K., … Bardgett, R. D. (2018). Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytologist, 219(2), 574–587. https://doi.org/10.1111/nph.15161
Díaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A., … Zak, M. R. (2004). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15(3), 295–304. https://doi.org/10.1658/1100-9233(2004)015[0295:tpttde]2.0.co;2
Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489
Díaz, S., Lavorel, S., deBello, F., Quétier, F., Grigulis, K., & Robson, T. M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20684–20689. https://doi.org/10.1073/pnas.0704716104
Engemann, K., Sandel, B., Boyle, B., Enquist, B. J., Jørgensen, P. M., Kattge, J., … Svenning, J. C. (2016). A plant growth form dataset for the New World. Ecology, 97(11), 3243–3243. https://doi.org/10.1002/ecy.1569
Enquist, B., Condit, R., Peet, R., Schildhauer, M., & Thiers, B. (2016). Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ Preprints, 4, e2615v2. https://doi.org/10.7287/peerj.preprints.2615v2
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., & Otero-Casal, C. (2017). Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of Sciences of the United States of America, 114(40), 10572–10577. https://doi.org/10.1073/pnas.1712381114
Fitter, A. H., & Peat, H. J. (1994). The ecological flora database. Journal of Ecology, 82(2), 415. https://doi.org/10.2307/2261309
Gallagher, R. V., Falster, D. S., Maitner, B., Salguero-Gomez, R., Vandvik, V., Pearse, W., … Enquist, B. J. (in press). The open traits network: Using open science principles to accelerate trait-based science across the tree of life. Nature Ecology & Evolution.
Garnier, E., Cortez, J., Billès, G., Navas, M.-L., Roumet, C., Debussche, M., … Toussaint, J.-P. (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630–2637. https://doi.org/10.1890/03-0799
Garnier, E., & Navas, M.-L. (2012). A trait-based approach to comparative functional plant ecology: Concepts, methods and applications for agroecology. A review. Agronomy for Sustainable Development, 32, 365–399. https://doi.org/10.1007/s13593-011-0036-y
Garnier, E., Stahl, U., Laporte, M.-A., Kattge, J., Mougenot, I., Kühn, I., … Klotz, S. (2017). Towards a thesaurus of plant characteristics: An ecological contribution. Journal of Ecology, 105(2), 298–309. https://doi.org/10.1111/1365-2745.12698
Green, W. (2009). USDA PLANTS Compilation, version 1, 09-02-02. (http://bricol.net/downloads/data/PLANTSdatabase/) NRCS: The PLANTS Database (http://plants.usda.gov, 1 Feb 2009). Baton Rouge, LA: National Plant Data Center.
Grime, J. P. (1974). Vegetation classification by reference to strategies. Nature, 250, 26–31. https://doi.org/10.1038/250026a0
Grime, J. P. (2001). Plant strategies, vegetation processes, and ecosystem properties. Chichester, UK: John Wiley & Sons.
Grime, J. P. (2006). Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. Journal of Vegetation Science, 17(2), 255–260. https://doi.org/10.1111/j.1654-1103.2006.tb02444.x
Iversen, C. M., McCormack, M. L., Powell, A. S., Blackwood, C. B., Freschet, G. T., Kattge, J., … Violle, C. (2017). A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytologist, 215(1), 15–26. https://doi.org/10.1111/nph.14486
Jetz, W., Cavender-Bares, J., Pavlick, R., Schimel, D., Davis, F. W., Asner, G. P., … Ustin, S. L. (2016). Monitoring plant functional diversity from space. Nature Plants, 2(3). https://doi.org/10.1038/nplants.2016.24
Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., … Wirth, C. (2011). TRY – A global database of plant traits. Global Change Biology, 17(9), 2905–2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x
Kattge, J., Díaz, S., & Wirth, C. (2014). Of carrots and sticks: Commentary. Nature Geoscience, 7(11), 778–779. https://doi.org/10.1038/ngeo2280
Kattge, J., Ogle, K., Boenisch, G., Diaz, S., Lavorel, S., Madin, J., … Wirth, C. (2011). A generic structure for plant trait databases. Methods in Ecology and Evolution, 2(2), 202–213. https://doi.org/10.1111/j.2041-210X.2010.00067.x
Kier, G., Mutke, J., Dinerstein, E., Ricketts, T. H., Küper, W., Kreft, H., & Barthlott, W. (2005). Global patterns of plant diversity and floristic knowledge. Journal of Biogeography, 32(7), 1107–1116. https://doi.org/10.1111/j.1365-2699.2005.01272.x
Kissling, W. D., Walls, R., Bowser, A., Jones, M. O., Kattge, J., Agosti, D., … Guralnick, R. P. (2018). Towards global data products of Essential Biodiversity Variables on species traits. Nature Ecology & Evolution, 2(10), 1531–1540. https://doi.org/10.1038/s41559-018-0667-3
Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., … Peco, B. (2008). The LEDA Traitbase: A database of life-history traits of the Northwest European flora. Journal of Ecology, 96(6), 1266–1274. https://doi.org/10.1111/j.1365-2745.2008.01430.x
Klotz, S., Kühn, I., & Durka, W. (2002). BIOLFLOR – Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland – Schriftenreihe für Vegetationskunde 38. Bonn, Germany: Bundesamt Für Naturschutz.
König, C., Weigelt, P., Schrader, J., Taylor, A., Kattge, J., & Kreft, H. (2019). Biodiversity data integration – The significance of data resolution and domain. PLoS Biology, 17(3), e3000183. https://doi.org/10.1371/journal.pbio.3000183
Lavorel, S., Colloff, M. J., McIntyre, S., Doherty, M. D., Murphy, H. T., Metcalfe, D. J., … Williams, K. J. (2015). Ecological mechanisms underpinning climate adaptation services. Global Change Biology, 21(1), 12–31. https://doi.org/10.1111/gcb.12689
Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16(5), 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x
Lavorel, S., Storkey, J., Bardgett, R. D., de Bello, F., Berg, M. P., Le Roux, X., … Harrington, R. (2013). A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. Journal of Vegetation Science, 24(5), 942–948. https://doi.org/10.1111/jvs.12083
Loranger, J., Meyer, S. T., Shipley, B., Kattge, J., Loranger, H., Roscher, C., & Weisser, W. W. (2012). Predicting invertebrate herbivory from plant traits: Evidence from 51 grassland species in experimental monocultures. Ecology, 93(12), 2674–2682. https://doi.org/10.1890/12-0328.1
Loranger, J., Meyer, S. T., Shipley, B., Kattge, J., Loranger, H., Roscher, C., … Weisser, W. W. (2013). Predicting invertebrate herbivory from plant traits: Polycultures show strong nonadditive effects. Ecology, 94(7), 1499–1509. https://doi.org/10.1890/12-2063.1
Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., & Villa, F. (2007). An ontology for describing and synthesizing ecological observation data. Ecological Informatics, 2, 279–296. https://doi.org/10.1016/j.ecoinf.2007.05.004
Martin, A. R., Hale, C. E., Cerabolini, B. E. L., Cornelissen, J. H. C., Craine, J., Gough, W. A., … Tirona, C. K. F. (2018). Inter- and intraspecific variation in leaf economic traits in wheat and maize. AoB PLANTS, 10(1), https://doi.org/10.1093/aobpla/ply006
Martin, A. R., & Isaac, M. E. (2015). REVIEW: Plant functional traits in agroecosystems: A blueprint for research. Journal of Applied Ecology, 52(6), 1425–1435. https://doi.org/10.1111/1365-2664.12526
McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21(4), 178–185. https://doi.org/10.1016/j.tree.2006.02.002
Moreno-Martínez, Á., Camps-Valls, G., Kattge, J., Robinson, N., Reichstein, M., van Bodegom, P., … Running, S. W. (2018). A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sensing of Environment, 218, 69–88. https://doi.org/10.1016/j.rse.2018.09.006
Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50. https://doi.org/10.1038/nature14324
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., … Kassem, K. R. (2001). Terrestrial Ecoregions of the world: A new map of life on earth. BioScience, 51(11), 933. https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2
Paula, S., Arianoutsou, M., Kazanis, D., Tavsanoglu, Ç., Lloret, F., Buhk, C., … Pausas, J. G. (2009). Fire-related traits for plant species of the Mediterranean Basin. Ecology, 90(5), 1420. https://doi.org/10.1890/08-1309.1
Peaucelle, M., Bellassen, V., Ciais, P., Peñuelas, J., & Viovy, N. (2016). A new approach to optimal discretization of plant functional types in a process-based ecosystem model with forest management: A case study for temperate conifers. Global Ecology and Biogeography, 26(4), 486–499. https://doi.org/10.1111/geb.12557
Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H. G., Scholes, R. J., … Wegmann, M. (2013). Essential biodiversity variables. Science, 339(6117), 277–278. https://doi.org/10.1126/science.1229931
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., … Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167–234. https://doi.org/10.1071/bt12225
Poschlod, P., Kleyer, M., Jackel, A.-K., Dannemann, A., & Tackenberg, O. (2003). BIOPOP — A database of plant traits and internet application for nature conservation. Folia Geobotanica, 38(3), 263–271. https://doi.org/10.1007/bf02803198
Reichman, O. J., Jones, M. B., & Schildhauer, M. P. (2011). Challenges and opportunities of open data in ecology. Science, 331(6018), 703–705. https://doi.org/10.1126/science.1197962
Royal Botanical Gardens KEW. (2008). Seed Information Database (SID). Version 7.1. Retrieved from http://data.kew.org/sid/
Sakschewski, B., von Bloh, W., Boit, A., Poorter, L., Peña-Claros, M., Heinke, J., … Thonicke, K. (2016). Resilience of Amazon forests emerges from plant trait diversity. Nature Climate Change, 6(11), 1032–1036. https://doi.org/10.1038/nclimate3109
Sakschewski, B., vonBloh, W., Boit, A., Rammig, A., Kattge, J., Poorter, L., … Thonicke, K. (2015). Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Global Change Biology, 21(7), 2711–2725. https://doi.org/10.1111/gcb.12870
Schrodt, F., Kattge, J., Shan, H., Fazayeli, F., Joswig, J., Banerjee, A., … Reich, P. B. (2015). BHPMF – A hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Global Ecology and Biogeography, 24(12), 1510–1521. https://doi.org/10.1111/geb.12335
Shan, H., Kattge, J., Reich, P., Banerjee, A., Schrodt, F., & Reichstein, M. (2012). Gap filling in the plant kingdom – Trait prediction using hierarchical probabilistic matrix factorization. Paper presented at the International Conference on Machine Learning (ICML), Edinburgh.
Smith, S. A., & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105(3), 302–314. https://doi.org/10.1002/ajb2.1019
ter Steege, H., Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., … Silman, M. R. (2013). Hyperdominance in the Amazonian tree flora. Science, 342(6156). https://doi.org/10.1126/science.1243092
Valladares, F., Gianoli, E., & Gomez, J. M. (2007). Ecological limits to plant phenotypic plasticity. New Phytologist, 176, 749–763. https://doi.org/10.1111/j.1469-8137.2007.02275.x
Verheijen, L. M., Aerts, R., Brovkin, V., Cavender-Bares, J., Cornelissen, J. H. C., Kattge, J., & van Bodegom, P. M. (2015). Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Global Change Biology, 21(8), 3074–3086. https://doi.org/10.1111/gcb.12871
Verheijen, L. M., Brovkin, V., Aerts, R., Bönisch, G., Cornelissen, J. H. C., Kattge, J., … van Bodegom, P. M. (2013). Impacts of trait variation through observed trait–climate relationships on performance of an Earth system model: A conceptual analysis. Biogeosciences, 10(8), 5497–5515. https://doi.org/10.5194/bg-10-5497-2013
Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional!Oikos, 116(5), 882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x
von Humboldt, A. (1817) De distributione geographica plantarum secundum coeli temperiem et altitudinem montium: Prolegomena. Lutetiae Parisiorum. In Libraria Graeco-Latino-Germanica. https://doi.org/10.5962/bhl.title.118581
Waltman, L., vanEck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635. https://doi.org/10.1016/j.joi.2010.07.002
Weigelt, P., König, C., & Kreft, H. (2019). GIFT – A global inventory of floras and traits for macroecology and biogeography. Journal of Biogeography. https://doi.org/10.1111/jbi.13623
Westoby, M., & Wright, I. J. (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21(5), 261–268. https://doi.org/10.1016/j.tree.2006.02.004
Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Díaz, S., … Wilf, P. (2017). Global climatic drivers of leaf size. Science, 357(6354), 917–921. https://doi.org/10.1126/science.aal4760
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821–827. https://doi.org/10.1038/nature02403
Xu, C. Y., & Griffin, K. L. (2006). Seasonal variation in the temperature response of leaf respiration in Quercus rubra: Foliage respiration and leaf properties. Functional Ecology, 20(5), 778–789. https://doi.org/10.1111/j.1365-2435.2006.01161.x
Xu, L. K., & Baldocchi, D. D. (2003). Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiology, 23(13), 865–877. https://doi.org/10.1093/treephys/23.13.865
Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., … Beaulieu, J. M. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506(7486), 89–92. https://doi.org/10.1038/nature12872
Abakumova, M., Zobel, K., Lepik, A., & Semchenko, M. (2016). Plasticity in plant functional traits is shaped by variability in neighbourhood species composition. New Phytologist, 211(2), 455–463. https://doi.org/10.1111/nph.13935
Abedi, M., Bartelheimer, M., & Poschlod, P. (2012). Aluminium toxic effects on seedling root survival affect plant composition along soil reaction gradients – A case study in dry sandy grasslands. Journal of Vegetation Science, 24(6), 1074–1085. https://doi.org/10.1111/jvs.12016
Adamidis, G. C., Kazakou, E., Fyllas, N. M., & Dimitrakopoulos, P. G. (2014). Species adaptive strategies and leaf economic relationships across serpentine and non-serpentine habitats on Lesbos, Eastern Mediterranean. PLoS ONE, 9(5), e96034. https://doi.org/10.1371/journal.pone.0096034
Adler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E., & Burke, I. C. (2004). Functional traits of graminoids in semi-arid steppes: A test of grazing histories. Journal of Applied Ecology, 41(4), 653–663. https://doi.org/10.1111/j.0021-8901.2004.00934.x
Adler, P. B., Salguero-Gomez, R., Compagnoni, A., Hsu, J. S., Ray-Mukherjee, J., Mbeau-Ache, C., & Franco, M. (2013). Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 740–745. https://doi.org/10.1073/pnas.1315179111
Adriaenssens, S. (2012). Dry deposition and canopy exchange for temperate tree species under high nitrogen deposition. (PhD), Ghent University, Ghent, Belgium.
Albert, C. H., de Bello, F., Boulangeat, I., Pellet, G., Lavorel, S., & Thuiller, W. (2011). On the importance of intraspecific variability for the quantification of functional diversity. Oikos, 121(1), 116–126. https://doi.org/10.1111/j.1600-0706.2011.19672.x
Albert, C. H., Thuiller, W., Yoccoz, N. G., Soudant, A., Boucher, F., Saccone, P., & Lavorel, S. (2010). Intraspecific functional variability: Extent, structure and sources of variation. Journal of Ecology, 98(3), 604–613. https://doi.org/10.1111/j.1365-2745.2010.01651.x
Aleixo, I., Norris, D., Hemerik, L., Barbosa, A., Prata, E., Costa, F., & Poorter, L. (2019). Amazonian rainforest tree mortality driven by climate and functional traits. Nature Climate Change, 9(5), 384–388. https://doi.org/10.1038/s41558-019-0458-0
Ali, H. E., Reineking, B., & Münkemüller, T. (2017). Effects of plant functional traits on soil stability: Intraspecific variability matters. Plant and Soil, 411(1–2), 359–375. https://doi.org/10.1007/s11104-016-3036-5
Almeida, D., Domingues, T. F., Ehleringer, J., Martinelli, L. A., Cook, C., Flanagan, L., & Ometto, J. P. (2001). LBA-ECO CD-02 Leaf Water Potential, Forest and Pasture Sites, Para, Brazil: 2000–2001. Retrieved from http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_xml:id=1100
Apgaua, D. M. G., Ishida, F. Y., Tng, D. Y. P., Laidlaw, M. J., Santos, R. M., Rumman, R., … Laurance, S. G. W. (2015). Functional traits and water transport strategies in lowland tropical rainforest trees. PLoS ONE, 10(6), e0130799. https://doi.org/10.1371/journal.pone.0130799
Atkin, O. K., Bloomfield, K. J., Reich, P. B., Tjoelker, M. G., Asner, G. P., Bonal, D., … Zaragoza-Castells, J. (2015). Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 206(2), 614–636. https://doi.org/10.1111/nph.13253
Aubin, I., Messier, C., Gachet, S., Lawrence, K., McKenney, D., Arseneault, A., … Munson, A. D. (2012). TOPIC–traits of plants in Canada. Retrieved from http://cfs.cloud.nrcan.gc.ca/ctn/topic.php
Auger, S., & Shipley, B. (2012). Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science, 24(3), 419–428. https://doi.org/10.1111/j.1654-1103.2012.01473.x
Baastrup-Spohr, L., Sand-Jensen, K., Nicolajsen, S. V., & Bruun, H. H. (2015). From soaking wet to bone dry: Predicting plant community composition along a steep hydrological gradient. Journal of Vegetation Science, 26(4), 619–630. https://doi.org/10.1111/jvs.12280
Bahar, N. H. A., Ishida, F. Y., Weerasinghe, L. K., Guerrieri, R., O'Sullivan, O. S., Bloomfield, K. J., … Atkin, O. K. (2016). Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. New Phytologist, 214(3), 1002–1018. https://doi.org/10.1111/nph.14079
Bahn, M., Wohlfahrt, G., Haubner, E., Horak, I., Michaeler, W., Rottmar, K., … Cernusca, A. (1999). Leaf photosynthesis, nitrogen contents and specific leaf area of 30 grassland species in differently managed mountain ecosystems in the Eastern Alps. In A. Cernusca, U. Tappeiner, & N. Bayfield (Eds.), Land-use changes in European mountain ecosystems. ECOMONT- Concept and Results (pp. 247–255). Berlin, Germany: Blackwell Wissenschaft.
Baraloto, C., Timothy Paine, C. E., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.-M., … Chave, J. (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13(11), 1338–1347. https://doi.org/10.1111/j.1461-0248.2010.01517.x
Baruch, Z., & Goldstein, G. (1999). Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia, 121(2), 183–192. https://doi.org/10.1007/s004420050920
Bauerle, W. L., Oren, R., Way, D. A., Qian, S. S., Stoy, P. C., Thornton, P. E., … Reynolds, R. F. (2012). Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proceedings of the National Academy of Sciences of the United States of America, 109(22), 8612–8617. https://doi.org/10.1073/pnas.1119131109
Bauters, M., Ampoorter, E., Huygens, D., Kearsley, E., De Haulleville, T., Sellan, G., … Verheyen, K. (2015). Functional identity explains carbon sequestration in a 77-year-old experimental tropical plantation. Ecosphere, 6(10), art198. https://doi.org/10.1890/es15-00342.1
Bauters, M., Verbeeck, H., Demol, M., Bruneel, S., Taveirne, C., Van der Heyden, D., … Boeckx, P. (2017). Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation. Biogeosciences, 14(23), 5313–5321. https://doi.org/10.5194/bg-14-5313-2017
Bauters, M., Vercleyen, O., Vanlauwe, B., Six, J., Bonyoma, B., Badjoko, H., … Boeckx, P. (2019). Long-term recovery of the functional community assembly and carbon pools in an African tropical forest succession. Biotropica, 51(3), 319–329. https://doi.org/10.1111/btp.12647
Beckmann, M., Hock, M., Bruelheide, H., & Erfmeier, A. (2012). The role of UV-B radiation in the invasion of Hieracium pilosella—A comparison of German and New Zealand plants. Environmental and Experimental Botany, 75, 173–180. https://doi.org/10.1016/j.envexpbot.2011.09.010
Belluau, M., & Shipley, B. (2017). Predicting habitat affinities of herbaceous dicots to soil wetness based on physiological traits of drought tolerance. Annals of Botany, 119(6), 1073–1084. https://doi.org/10.1093/aob/mcw267
Belluau, M., & Shipley, B. (2018). Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots. PLoS ONE, 13(3), e0193130. https://doi.org/10.1371/journal.pone.0193130
Benomar, L., Lamhamedi, M. S., Pepin, S., Rainville, A., Lambert, M.-C., Margolis, H. A., … Beaulieu, J. (2018). Thermal acclimation of photosynthesis and respiration of southern and northern white spruce seed sources tested along a regional climatic gradient indicates limited potential to cope with temperature warming. Annals of Botany, 121(3), 443–457. https://doi.org/10.1093/aob/mcx174
Bergmann, J., Ryo, M., Prati, D., Hempel, S., & Rillig, M. C. (2017). Root traits are more than analogues of leaf traits: The case for diaspore mass. New Phytologist, 216(4), 1130–1139. https://doi.org/10.1111/nph.14748
Berner, L. T., Alexander, H. D., Loranty, M. M., Ganzlin, P., Mack, M. C., Davydov, S. P., & Goetz, S. J. (2015). Biomass allometry for alder, dwarf birch, and willow in boreal forest and tundra ecosystems of far northeastern Siberia and north-central Alaska. Forest Ecology and Management, 337, 110–118. https://doi.org/10.1016/j.foreco.2014.10.027
Bernhardt-Römermann, M., Poschlod, P., & Hentschel, J. (2018). BryForTrait – A life-history trait database of forest bryophytes. Journal of Vegetation Science, 29(4), 798–800. https://doi.org/10.1111/jvs.12646
Blonder, B., Baldwin, B. G., Enquist, B. J., & Robichaux, R. H. (2015). Variation and macroevolution in leaf functional traits in the Hawaiian silversword alliance (Asteraceae). Journal of Ecology, 104(1), 219–228. https://doi.org/10.1111/1365-2745.12497
Blonder, B., & Enquist, B. J. (2014). Inferring climate from angiosperm leaf venation networks. New Phytologist, 204(1), 116–126. https://doi.org/10.1111/nph.12780
Blonder, B., Kapas, R. E., Dalton, R. M., Graae, B. J., Heiling, J. M., & Opedal, Ø. H. (2018). Microenvironment and functional-trait context dependence predict alpine plant community dynamics. Journal of Ecology, 106(4), 1323–1337. https://doi.org/10.1111/1365-2745.12973
Blonder, B., Royer, D. L., Johnson, K. R., Miller, I., & Enquist, B. J. (2014). Plant ecological strategies shift across the cretaceous-paleogene boundary. PLoS Biology, 12(9), e1001949. https://doi.org/10.1371/journal.pbio.1001949
Blonder, B., Vasseur, F., Violle, C., Shipley, B., Enquist, B. J., & Vile, D. (2015). Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB PLANTS, 7, plv049. https://doi.org/10.1093/aobpla/plv049
Blonder, B., Violle, C., Bentley, L. P., & Enquist, B. J. (2010). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14(2), 91–100. https://doi.org/10.1111/j.1461-0248.2010.01554.x
Blonder, B., Violle, C., & Enquist, B. J. (2013). Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology, 101(4), 981–989. https://doi.org/10.1111/1365-2745.12102
Bocanegra-González, K. T., Fernández-Méndez, F., & Galvis-Jiménez, J. D. (2015). Grupos funcionales de árboles en bosques secundarios de la región Bajo Calima (Buenaventura, Colombia). Boletín Científico Del Centro De Museos, 19(1), 17–40. https://doi.org/10.17151/bccm.2015.19.1.2
Bond-Lamberty, B., Gower, S. T., Wang, C., Cyr, P., & Veldhuis, H. (2006). Nitrogen dynamics of a boreal black spruce wildfire chronosequence. Biogeochemistry, 81(1), 1–16. https://doi.org/10.1007/s10533-006-9025-7
Bond-Lamberty, B., Wang, C., Gower, S. T., & Norman, J. (2002). Leaf area dynamics of a boreal black spruce fire chronosequence. Tree Physiology, 22(14), 993–1001. https://doi.org/10.1093/treephys/22.14.993
Boucher, F. C., Thuiller, W., Arnoldi, C., Albert, C. H., & Lavergne, S. (2013). Unravelling the architecture of functional variability in wild populations of Polygonum viviparum L. Functional Ecology, 27(2), 382–391. https://doi.org/10.1111/1365-2435.12034
Boukili, V. K., & Chazdon, R. L. (2017). Environmental filtering, local site factors and landscape context drive changes in functional trait composition during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 24, 37–47. https://doi.org/10.1016/j.ppees.2016.11.003
Brown, K. A., Johnson, S. E., Parks, K. E., Holmes, S. M., Ivoandry, T., Abram, N. K., … Wright, P. C. (2013). Use of provisioning ecosystem services drives loss of functional traits across land use intensification gradients in tropical forests in Madagascar. Biological Conservation, 161, 118–127. https://doi.org/10.1016/j.biocon.2013.03.014
Brumnich, F., Marchetti, Z. Y., & Pereira, M. S. (2019). Changes in forest diversity over a chronosequence of fluvial islands. iForest – Biogeosciences and Forestry, 12(3), 306–316. https://doi.org/10.3832/ifor2737-012
Bruun, H. H. (2019). Dataset on reproductive traits of Scandinavian alpine plants. Data in Brief, 25. https://doi.org/10.1016/j.dib.2019.104149
Bruy, D., Hattermann, T., Barrabé, L., Mouly, A., Barthélémy, D., & Isnard, S. (2018). Evolution of plant architecture, functional diversification and divergent evolution in the genus Atractocarpus (Rubiaceae) for New Caledonia. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.01775
Buchanan, S., Isaac, M. E., Van den Meersche, K., & Martin, A. R. (2018). Functional traits of coffee along a shade and fertility gradient in coffee agroforestry systems. Agroforestry Systems, 93(4), 1261–1273. https://doi.org/10.1007/s10457-018-0239-1
Bucher, S. F., Auerswald, K., Tautenhahn, S., Geiger, A., Otto, J., Müller, A., & Römermann, C. (2016). Inter- and intraspecific variation in stomatal pore area index along elevational gradients and its relation to leaf functional traits. Plant Ecology, 217(3), 229–240. https://doi.org/10.1007/s11258-016-0564-2
Burrascano, S., Copiz, R., Del Vico, E., Fagiani, S., Giarrizzo, E., Mei, M., … Blasi, C. (2015). Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecology, 16(2), 244–253. https://doi.org/10.1556/168.2015.16.2.12
Butterfield, B. J., & Briggs, J. M. (2010). Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia, 165(2), 477–487. https://doi.org/10.1007/s00442-010-1741-y
Byun, C., deBlois, S., & Brisson, J. (2012). Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. Journal of Ecology, 101(1), 128–139. https://doi.org/10.1111/1365-2745.12016
Cadotte, M. W. (2017). Functional traits explain ecosystem function through opposing mechanisms. Ecology Letters, 20(8), 989–996. https://doi.org/10.1111/ele.12796
Cailleret, M., Jansen, S., Robert, E. M. R., Desoto, L., Aakala, T., Antos, J. A., … Martinez-Vilalta, J. (2017). A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 23(4), 1675–1690. https://doi.org/10.1111/gcb.13535
Campany, C. E., Martin, L., & Watkins, J. E. (2018). Convergence of ecophysiological traits drives floristic composition of early lineage vascular plants in a tropical forest floor. Annals of Botany, 123(5), 793–803. https://doi.org/10.1093/aob/mcy210
Campbell, C., Atkinson, L., Zaragoza-Castells, J., Lundmark, M., Atkin, O., & Hurry, V. (2007). Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist, 176(2), 375–389. https://doi.org/10.1111/j.1469-8137.2007.02183.x
Campetella, G., Botta-Dukát, Z., Wellstein, C., Canullo, R., Gatto, S., Chelli, S., … Bartha, S. (2011). Patterns of plant trait–environment relationships along a forest succession chronosequence. Agriculture, Ecosystems & Environment, 145(1), 38–48. https://doi.org/10.1016/j.agee.2011.06.025
Campetella, G., Chelli, S., Wellstein, C., Farris, E., Calvia, G., Simonetti, E., … Marignani, M. (2019). Contrasting patterns in leaf traits of Mediterranean shrub communities along an elevation gradient: Measurements matter. Plant Ecology, 220(7–8), 765–776. https://doi.org/10.1007/s11258-019-00951-y
Carvalho, F., Brown, K. A., Waller, M. P., & Boom, A. (2019). Leaf traits interact with management and water table to modulate ecosystem properties in fen peatlands. Plant and Soil, 441(1–2), 331–347. https://doi.org/10.1007/s11104-019-04126-6
Carvalho, F., Brown, K. A., Waller, M. P., Bunting, M. J., Boom, A., & Leng, M. J. (2019). A method for reconstructing temporal changes in vegetation functional trait composition using Holocene pollen assemblages. PLoS ONE, 14(5), e0216698. https://doi.org/10.1371/journal.pone.0216698
Castro-Díez, P., Puyravaud, J. P., Cornelissen, J. H. C., & Villar-Salvador, P. (1998). Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia, 116(1–2), 57–66. https://doi.org/10.1007/s004420050563
Catford, J. A., Morris, W. K., Vesk, P. A., Gippel, C. J., & Downes, B. J. (2014). Species and environmental characteristics point to flow regulation and drought as drivers of riparian plant invasion. Diversity and Distributions, 20(9), 1084–1096. https://doi.org/10.1111/ddi.12225
Catford, J. A., Smith, A. L., Wragg, P. D., Clark, A. T., Kosmala, M., Cavender-Bares, J., … Tilman, D. (2019). Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a long-term grassland experiment. Ecology Letters, 22(4), 593–604. https://doi.org/10.1111/ele.13220
Cavender-Bares, J., Keen, A., & Miles, B. (2006). Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology, 87(sp7), S109–S122. https://doi.org/10.1890/0012-9658(2006)87[109:psofpc]2.0.co;2
Cerabolini, B. E. L., Brusa, G., Ceriani, R. M., De Andreis, R., Luzzaro, A., & Pierce, S. (2010). Can CSR classification be generally applied outside Britain?Plant Ecology, 210(2), 253–261. https://doi.org/10.1007/s11258-010-9753-6
Cerabolini, B. E. L., Pierce, S., Luzzaro, A., & Ossola, A. (2009). Species evenness affects ecosystem processes in situ via diversity in the adaptive strategies of dominant species. Plant Ecology, 207(2), 333–345. https://doi.org/10.1007/s11258-009-9677-1
Chacón-Madrigal, E., Wanek, W., Hietz, P., & Dullinger, S. (2018). Traits indicating a conservative resource strategy are weakly related to narrow range size in a group of neotropical trees. Perspectives in Plant Ecology, Evolution and Systematics, 32, 30–37. https://doi.org/10.1016/j.ppees.2018.01.003
Chain-Guadarrama, A., Imbach, P., Vilchez-Mendoza, S., Vierling, L., & Finegan, B. (2017). Potential trajectories of old-growth Neotropical forest functional composition under climate change. Ecography, 41, 75–89.
Chambers, J. Q., Tribuzy, E. S., Toledo, L. C., Crispim, B. F., Higuchi, N., dosSantos, J., … Trumbore, S. E. (2004). Respiration from a tropical forest ecosystem: Partitioning of sources and low carbon use efficiency. Ecological Applications, 14(sp4), 72–88. https://doi.org/10.1890/01-6012
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
Chen, A., Lichstein, J. W., Osnas, J. L. D., & Pacala, S. W. (2014). Species-independent down-regulation of leaf photosynthesis and respiration in response to shading: Evidence from six temperate tree species. PLoS ONE, 9(4), e91798. https://doi.org/10.1371/journal.pone.0091798
Chen, S.-C., Cornwell, W. K., Zhang, H.-X., & Moles, A. T. (2017). Plants show more flesh in the tropics: Variation in fruit type along latitudinal and climatic gradients. Ecography, 40(4), 531–538. https://doi.org/10.1111/ecog.02010
Chen, Y. H., Han, W. X., Tang, L. Y., Tang, Z. Y., & Fang, J. Y. (2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 36(2), 178–184. https://doi.org/10.1111/j.1600-0587.2011.06833.x
Chianucci, F., Pisek, J., Raabe, K., Marchino, L., Ferrara, C., & Corona, P. (2018). A dataset of leaf inclination angles for temperate and boreal broadleaf woody species. Annals of Forest Science, 75(2). https://doi.org/10.1007/s13595-018-0730-x
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., … Zanne, A. E. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752–755. https://doi.org/10.1038/nature11688
Chrobock, T., Kempel, A., Fischer, M., & van Kleunen, M. (2011). Introduction bias: Cultivated alien plant species germinate faster and more abundantly than native species in Switzerland. Basic and Applied Ecology, 12(3), 244–250. https://doi.org/10.1016/j.baae.2011.03.001
Chung, K.-S., Hipp, A. L., & Roalson, E. H. (2012). Chromosome number evolves independently of genome size in a clade with nonlocalized centromeres (Carex: Cyperaceae). Evolution, 66(9), 2708–2722. https://doi.org/10.1111/j.1558-5646.2012.01624.x
Chytrý, M., Tichý, L., Dřevojan, P., Sádlo, J., & Zelený, D. (2018). Ellenberg-type indicator values for the Czech flora. Preslia, 90(2), 83–103. https://doi.org/10.23855/preslia.2018.083
Ciccarelli, D. (2015). Mediterranean coastal dune vegetation: Are disturbance and stress the key selective forces that drive the psammophilous succession?Estuarine, Coastal and Shelf Science, 165, 247–253. https://doi.org/10.1016/j.ecss.2015.05.023
Ciocârlan, V. (2009). The illustrated Flora of Romania. Pteridophyta et Spermatopyta (in Romanian). Editura Ceres. 1141 pp.
Cornelissen, J. H. C., Diez, P. C., & Hunt, R. (1996). Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. The Journal of Ecology, 84(5), 755. https://doi.org/10.2307/2261337
Cornelissen, J. H. C., Quested, H. M., Gwynn-Jones, D., Van Logtestijn, R. S. P., De Beus, M. A. H., Kondratchuk, A., … Aerts, R. (2004). Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Functional Ecology, 18(6), 779–786. https://doi.org/10.1111/j.0269-8463.2004.00900.x
Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., … Westoby, M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10), 1065–1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x
Cornwell, W. K., Wright, I. J., Turner, J., Maire, V., Barbour, M. M., Cernusak, L. A., … Santiago, L. S. (2018). Climate and soils together regulate photosynthetic carbon isotope discrimination within C3 plants worldwide. Global Ecology and Biogeography, 27(9), 1056–1067. https://doi.org/10.1111/geb.12764
Craine, J. M., Elmore, A. J., Aidar, M. P. M., Bustamante, M., Dawson, T. E., Hobbie, E. A., … Wright, I. J. (2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 183(4), 980–992. https://doi.org/10.1111/j.1469-8137.2009.02917.x
Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J., & Johnson, L. C. (2005). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86(1), 12–19. https://doi.org/10.1890/04-1075
Craine, J. M., Nippert, J. B., Towne, E. G., Tucker, S., Kembel, S. W., Skibbe, A., & McLauchlan, K. K. (2011). Functional consequences of climate change-induced plant species loss in a tallgrass prairie. Oecologia, 165(4), 1109–1117. https://doi.org/10.1007/s00442-011-1938-8
Craven, D., Braden, D., Ashton, M. S., Berlyn, G. P., Wishnie, M., & Dent, D. (2007). Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. Forest Ecology and Management, 238(1–3), 335–346. https://doi.org/10.1016/j.foreco.2006.10.030
Dahlin, K. M., Asner, G. P., & Field, C. B. (2013). Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 110(17), 6895–6900. https://doi.org/10.1073/pnas.1215513110
Dainese, M., & Bragazza, L. (2012). Plant traits across different habitats of the Italian Alps: A comparative analysis between native and alien species. Alpine Botany, 122, 11–21. https://doi.org/10.1007/s00035-012-0101-4
Dalke, I. V., Novakovskiy, A. B., Maslova, S. P., & Dubrovskiy, Y. A. (2018). Morphological and functional traits of herbaceous plants with different functional types in the European Northeast. Plant Ecology, 219(11), 1295–1305. https://doi.org/10.1007/s11258-018-0879-2
Dang-Le, A. T., Edelin, C., & Le-Cong, K. (2013). Ontogenetic variations in leaf morphology of the tropical rain forest species Dipterocarpus alatus Roxb. ex G. Don. Trees, 27(3), 773–786. https://doi.org/10.1007/s00468-012-0832-2
Dawson, S. K., Warton, D. I., Kingsford, R. T., Berney, P., Keith, D. A., & Catford, J. A. (2017). Plant traits of propagule banks and standing vegetation reveal flooding alleviates impacts of agriculture on wetland restoration. Journal of Applied Ecology, 54(6), 1907–1918. https://doi.org/10.1111/1365-2664.12922
deAraujo, A. C., Ometto, J. P. H. B., Dolman, A. J., Kruijt, B., Waterloo, M. J., & Ehleringer, J. R. (2012). LBA-ECO CD-02 C and N isotopes in leaves and atmospheric CO2, Amazonas, Brazil. Retrieved from http://dx.doi.org/10.3334/ORNLDAAC/1097
deFrutos, Á., Navarro, T., Pueyo, Y., & Alados, C. L. (2015). Inferring resilience to fragmentation-induced changes in plant communities in a semi-arid Mediterranean ecosystem. PLoS ONE, 10(3), e0118837. https://doi.org/10.1371/journal.pone.0118837
De Long, J. R., Jackson, B. G., Wilkinson, A., Pritchard, W. J., Oakley, S., Mason, K. E., … Bardgett, R. D. (2019). Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland. Journal of Ecology, 107(4), 1704–1719. https://doi.org/10.1111/1365-2745.13160
deVries, F. T., & Bardgett, R. D. (2016). Plant community controls on short-term ecosystem nitrogen retention. New Phytologist, 210(3), 861–874. https://doi.org/10.1111/nph.13832
Dechant, B., Cuntz, M., Vohland, M., Schulz, E., & Doktor, D. (2017). Estimation of photosynthesis traits from leaf reflectance spectra: Correlation to nitrogen content as the dominant mechanism. Remote Sensing of Environment, 196, 279–292. https://doi.org/10.1016/j.rse.2017.05.019
Delpierre, N., Berveiller, D., Granda, E., & Dufrêne, E. (2015). Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytologist, 210(2), 459–470. https://doi.org/10.1111/nph.13771
Demey, A., Staelens, J., Baeten, L., Boeckx, P., Hermy, M., Kattge, J., & Verheyen, K. (2013). Nutrient input from hemiparasitic litter favors plant species with a fast-growth strategy. Plant and Soil, 371(1–2), 53–66. https://doi.org/10.1007/s11104-013-1658-4
Domingues, T. F., Martinelli, L. A., & Ehleringer, J. R. (2007). Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia, Brazil. Plant Ecology, 193(1), 101–112. https://doi.org/10.1007/s11258-006-9251-z
Domingues, T. F., Meir, P., Feldpausch, T. R., Saiz, G., Veenendaal, E. M., Schrodt, F., … Lloyd, J. O. N. (2010). Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell & Environment, 33(6), 959–980. https://doi.org/10.1111/j.1365-3040.2010.02119.x
Dong, N., Prentice, I. C., Evans, B. J., Caddy-Retalic, S., Lowe, A. J., & Wright, I. J. (2017). Leaf nitrogen from first principles: Field evidence for adaptive variation with climate. Biogeosciences, 14(2), 481–495. https://doi.org/10.5194/bg-14-481-2017
Dressler, S., Schmidt, M., & Zizka, G. (2014). Introducing 'African plants – A Photo Guide' – An interactive photo data-base and rapid identification tool for continental Africa. Taxon, 63(5), 1159–1161. https://doi.org/10.12705/635.26
Dwyer, J. M., Hobbs, R. J., & Mayfield, M. M. (2014). Specific leaf area responses to environmental gradients through space and time. Ecology, 95(2), 399–410. https://doi.org/10.1890/13-0412.1
Ellenberg, H., & Leuschner, C. (2010). Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht (6th ed.). Stuttgart, Germany: Ulmer.
Fagúndez, J., & Izco, J. (2008). Seed morphology of two distinct species of Erica L. (Ericaceae). Acta Botanica Malacitana, 33, 1–9.
Fagúndez, J., Juan, R., Fernández, I., Pastor, J., & Izco, J. (2010). Systematic relevance of seed coat anatomy in the European heathers (Ericeae, Ericaceae). Plant Systematics and Evolution, 284(1–2), 65–76. https://doi.org/10.1007/s00606-009-0240-2
Falster, D. S., Duursma, R. A., Ishihara, M. I., Barneche, D. R., FitzJohn, R. G., Vårhammar, A., … York, R. A. (2015). BAAD: A biomass and allometry database for woody plants. Ecology, 96(5), 1445–1445. https://doi.org/10.1890/14-1889.1
Fazlioglu, F. (2008). Numerical analysis of Taeniatherum caput-medusae collected throughout Turkey. Report from project at Middle East Technical University (METU), Ankara, Turkey.
Fazlioglu, F. (2011). A phenetics for infrageneric grouping of Limonium Mill. genus (Plumbaginaceae) in Turkey. Master thesis, Middle East Technical University (METU), Ankara, Turkey.
Fazlioglu, F., Al-Namazi, A., & Bonser, S. P. (2016). Reproductive efficiency and shade avoidance plasticity under simulated competition. Ecology and Evolution, 6(14), 4947–4957. https://doi.org/10.1002/ece3.2254
Fazlioglu, F., & Bonser, S. P. (2016). Phenotypic plasticity and specialization in clonal versus non-clonal plants: A data synthesis. Acta Oecologica, 77, 193–200. https://doi.org/10.1016/j.actao.2016.10.012
Fazlioglu, F., Wan, J. S. H., & Bonser, S. P. (2016). Testing specialization hypothesis on a stress gradient. Austral Ecology, 42(1), 40–47. https://doi.org/10.1111/aec.12399
Fazlioglu, F., Wan, J. S. H., & Bonser, S. P. (2018). Phenotypic plasticity and specialization along an altitudinal gradient in Trifolium repens. Turkish Journal of Botany, 42(4), 440–447. https://doi.org/10.3906/bot-1711-21
Feng, Y., & van Kleunen, M. (2014). Responses to shading of naturalized and non-naturalized exotic woody species. Annals of Botany, 114(5), 981–989. https://doi.org/10.1093/aob/mcu163
Findurová, A. (2018). Variability of leaf traits SLA and LDMC in selected species of the Czech flora (Master thesis). Brno, Czech Republic: Masaryk University.
Finegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M. S., Carreño-Rocabado, G., … Poorter, L. (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103, 191–201.
Firn, J., McGree, J. M., Harvey, E., Flores-Moreno, H., Schütz, M., Buckley, Y. M., … Risch, A. C. (2019). Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology & Evolution, 3(3), 400–406. https://doi.org/10.1038/s41559-018-0790-1
Flowers, T. J., Santos, J., Jahns, M., Warburton, B., & Reed, P. (2017). eHALOPH – Halophytes database (version 3.11) accessed 2017. Retrieved from http://www.sussex.ac.uk/affiliates/halophytes
Fonseca, C. R., Overton, J. M., Collins, B., & Westoby, M. (2000). Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88(6), 964–977. https://doi.org/10.1046/j.1365-2745.2000.00506.x
Forgiarini, C., Souza, A. F., Longhi, S. J., & Oliveira, J. M. (2014). In the lack of extreme pioneers: Trait relationships and ecological strategies of 66 subtropical tree species. Journal of Plant Ecology, 8(4), 359–367. https://doi.org/10.1093/jpe/rtu028
Fortunel, C., McFadden, I. R., Valencia, R., & Kraft, N. J. B. (2019). Neither species geographic range size, climatic envelope, nor intraspecific leaf trait variability capture habitat specialization in a hyperdiverse Amazonian forest. Biotropica, 51(3), 304–310. https://doi.org/10.1111/btp.12643
Frenette-Dussault, C., Shipley, B., Léger, J.-F., Meziane, D., & Hingrat, Y. (2011). Functional structure of an arid steppe plant community reveals similarities with Grime's C-S-R theory. Journal of Vegetation Science, 23(2), 208–222. https://doi.org/10.1111/j.1654-1103.2011.01350.x
Freschet, G. T., Cornelissen, J. H. C., vanLogtestijn, R. S. P., & Aerts, R. (2010). Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology, 98(2), 362–373. https://doi.org/10.1111/j.1365-2745.2009.01615.x
Freschet, G. T., Kichenin, E., & Wardle, D. A. (2015). Explaining within-community variation in plant biomass allocation: A balance between organ biomass and morphology above vs below ground?Journal of Vegetation Science, 26(3), 431–440. https://doi.org/10.1111/jvs.12259
Freschet, G. T., Swart, E. M., & Cornelissen, J. H. C. (2015). Integrated plant phenotypic responses to contrasting above- and below-ground resources: Key roles of specific leaf area and root mass fraction. New Phytologist, 206(4), 1247–1260. https://doi.org/10.1111/nph.13352
Freschet, G. T., Violle, C., Bourget, M. Y., Scherer-Lorenzen, M., & Fort, F. (2018). Allocation, morphology, physiology, architecture: The multiple facets of plant above- and below-ground responses to resource stress. New Phytologist, 219(4), 1338–1352. https://doi.org/10.1111/nph.15225
Fry, E. L., Power, S. A., & Manning, P. (2013). Trait-based classification and manipulation of plant functional groups for biodiversity-ecosystem function experiments. Journal of Vegetation Science, 25(1), 248–261. https://doi.org/10.1111/jvs.12068
Fyllas, N. M., Christopoulou, A., Galanidis, A., Michelaki, C. Z., Giannakopoulos, C., Dimitrakopoulos, P. G., … Gloor, M. (2017). Predicting species dominance shifts across elevation gradients in mountain forests in Greece under a warmer and drier climate. Regional Environmental Change, 17(4), 1165–1177. https://doi.org/10.1007/s10113-016-1093-1
Fyllas, N. M., Patiño, S., Baker, T. R., Bielefeld Nardoto, G., Martinelli, L. A., Quesada, C. A., … Lloyd, J. (2009). Basin-wide variations in foliar properties of Amazonian forest: Phylogeny, soils and climate. Biogeosciences, 6(11), 2677–2708. https://doi.org/10.5194/bg-6-2677-2009
Gachet, S., Véla, E., & Tatoni, T. (2005). BASECO: A floristic and ecological database of Mediterranean French flora. Biodiversity and Conservation, 14(4), 1023–1034. https://doi.org/10.1007/s10531-004-8411-5
Gallagher, R. V., & Leishman, M. R. (2012). A global analysis of trait variation and evolution in climbing plants. Journal of Biogeography, 39(10), 1757–1771. https://doi.org/10.1111/j.1365-2699.2012.02773.x
Gallagher, R. V., Leishman, M. R., & Moles, A. T. (2011). Traits and ecological strategies of Australian tropical and temperate climbing plants. Journal of Biogeography, 38(5), 828–839. https://doi.org/10.1111/j.1365-2699.2010.02455.x
García-Palacios, P., Maestre, F. T., Kattge, J., & Wall, D. H. (2013). Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters, 16(8), 1045–1053. https://doi.org/10.1111/ele.12137
Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., … Zarovali, M. P. (2007). Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Annals of Botany, 99(5), 967–985. https://doi.org/10.1093/aob/mcl215
Giarrizzo, E., Burrascano, S., Chiti, T., de Bello, F., Lepš, J., Zavattero, L., & Blasi, C. (2016). Re-visiting historical semi-natural grasslands in the Apennines to assess patterns of changes in species composition and functional traits. Applied Vegetation Science, 20(2), 247–258. https://doi.org/10.1111/avsc.12288
Giroldo, A. (2016). Pequenas plantas, grandes estrategias: adaptacoes e sobrevivencia no Cerrado. PhD thesis, University of Brasilia, Brasil.
Givnish, T. J., Montgomery, R. A., & Goldstein, G. (2004). Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: Light regimes, static light responses, and whole-plant compensation points. American Journal of Botany, 91(2), 228–246. https://doi.org/10.3732/ajb.91.2.228
Golovko, T., Dymova, O., Yatsko, Y., & Tabalenkova, G. (2011). Photosynthetic pigments apparatus in the northern plants. In M. Pessarakli (Ed.), Handbook of plant and crop stress (3rd ed., pp. 391–405). New York, NY: Marcel Dekker.
Gonzalez-Akre, E., McShea, W., Bourg, N., & Anderson-Teixeira, K. (2015). Leaf traits data (SLA) for 56 woody species at the Smithsonian Conservation Biology Institute-ForestGEO Forest Dynamic Plot. Front Royal, Virginia. USA. [Data set]. Version 1.0. Retrieved from http://www.try-db.org
Granda, E., Baumgarten, F., Gessler, A., Gil-Pelegrin, E., Peguero-Pina, J. J., Sancho-Knapik, D. E., … Resco de Dios, V. (2020). Day-length regulates seasonal patterns of stomatal conductance in Quercus species. Plant, Cell & Environment. https://doi.org/10.1111/pce.13665
Gubsch, M., Buchmann, N., Schmid, B., Schulze, E.-D., Lipowsky, A., & Roscher, C. (2011). Differential effects of plant diversity on functional trait variation of grass species. Annals of Botany, 107(1), 157–169. https://doi.org/10.1093/aob/mcq220
Guerin, G. R., Wen, H., & Lowe, A. J. (2012). Leaf morphology shift linked to climate change. Biology Letters, 8(5), 882–886. https://doi.org/10.1098/rsbl.2012.0458
Gutiérrez, A. G., & Huth, A. (2012). Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspectives in Plant Ecology, Evolution and Systematics, 14(4), 243–256. https://doi.org/10.1016/j.ppees.2012.01.004
Guy, A. L., Mischkolz, J. M., & Lamb, E. G. (2013). Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca Sand Dunes in well-watered greenhouse trials. Botany-Botanique, 91(3), 176–181. https://doi.org/10.1139/cjb-2012-0162
Han, W., Fang, J., Guo, D., & Zhang, Y. (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168(2), 377–385. https://doi.org/10.1111/j.1469-8137.2005.01530.x
Han, W. X., Chen, Y. H., Zhao, F. J., Tang, L. Y., Jiang, R. F., & Zhang, F. S. (2012). Floral, climatic and soil pH controls on leaf ash content in China's terrestrial plants. Global Ecology and Biogeography, 21(3), 376–382. https://doi.org/10.1111/j.1466-8238.2011.00677.x
Hayes, F. J., Buchanan, S. W., Coleman, B., Gordon, A. M., Reich, P. B., Thevathasan, N. V., … Martin, A. R. (2018). Intraspecific variation in soy across the leaf economics spectrum. Annals of Botany, 123(1), 107–120. https://doi.org/10.1093/aob/mcy147
He, P., Wright, I. J., Zhu, S., Onoda, Y., Liu, H., Li, R., … Ye, Q. (2019). Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements. New Phytologist, 223(2), 607–618. https://doi.org/10.1111/nph.15803
He, T., Fowler, W. M., & Causley, C. L. (2015). High nutrient-use efficiency during early seedling growth in diverse Grevillea species (Proteaceae). Scientific Reports, 5. https://doi.org/10.1038/srep17132
He, T., Lamont, B. B., & Downs, K. S. (2011). Banksias born to burn. New Phytologist, 191, 184–196. https://doi.org/10.1111/j.1469-8137.2011.03663.x
He, T., Pausas, J. P., Belcher, C. M., Schwilk, D. W., & Lamont, B. B. (2012). Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytologist, 194, 751–759. https://doi.org/10.1111/j.1469-8137.2012.04079.x
Heberling, J. M., Cassidy, S. T., Fridley, J. D., & Kalisz, S. (2019). Carbon gain phenologies of spring-flowering perennials in a deciduous forest indicate a novel niche for a widespread invader. New Phytologist, 221(2), 778–788. https://doi.org/10.1111/nph.15404
Heberling, J. M., & Mason, N. W. H. (2018). Are endemics functionally distinct? Leaf traits of native and exotic woody species in a New Zealand forest. PLoS ONE, 13(5), e0196746. https://doi.org/10.1371/journal.pone.0196746
Herz, K., Dietz, S., Haider, S., Jandt, U., Scheel, D., & Bruelheide, H. (2017). Drivers of intraspecific trait variation of grass and forb species in German meadows and pastures. Journal of Vegetation Science, 28(4), 705–716. https://doi.org/10.1111/jvs.12534
Hickler, T. (1999). Plant functional types and community characteristics along environmental gradients on Öland's Great Alvar (Sweden). Master’s thesis, University of Lund, Sweden.
Hietz, P., Rosner, S., Hietz-Seifert, U., & Wright, S. J. (2016). Wood traits related to size and life history of trees in a Panamanian rainforest. New Phytologist, 213(1), 170–180. https://doi.org/10.1111/nph.14123
Hill, M. O., Preston, C. D., & Roy, D. B. (2004). PLANTATT – Attributes of British and Irish plants: Status, size, life history, geography and habitats. Huntingdon, UK: Centre for Ecology and Hydrology.
Hipp, A. L., Glasenhardt, M.-C., Bowles, M. L., Garner, M., Scharenbroch, B. C., Williams, E. W., … Larkin, D. J. (2018). Effects of phylogenetic diversity and phylogenetic identity in a restoration ecology experiment. In R. Scherson & D. Faith (Eds.), Phylogenetic diversity (pp. 189–210). Cham: Springer.
Hogan, J. A., Valverde-Barrantes, O. J., Ding, Q., Xu, H., & Baraloto, C. (2019). Intraspecific root and leaf trait variation with tropical forest successional status: Consequences for community-weighted patterns. Retrieved from http://dx.doi.org/10.1101/611640
Hou, E., Chen, C., McGroddy, M. E., & Wen, D. (2012). Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China. PLoS ONE, 7(12), e52071. https://doi.org/10.1371/journal.pone.0052071
Hough-Snee, N., Nackley, L. L., Kim, S.-H., & Ewing, K. (2015). Does plant performance under stress explain divergent life history strategies? The effects of flooding and nutrient stress on two wetland sedges. Aquatic Botany, 120, 151–159. https://doi.org/10.1016/j.aquabot.2014.03.001
Isaac, M. E., Martin, A. R., de Melo Virginio Filho, E., Rapidel, B., Roupsard, O., & Van den Meersche, K. (2017). Intraspecific trait variation and coordination: Root and leaf economics spectra in coffee across environmental gradients. Frontiers in Plant Science, 8(1196), https://doi.org/10.3389/fpls.2017.01196
Jager, M. M., Richardson, S. J., Bellingham, P. J., Clearwater, M. J., & Laughlin, D. C. (2015). Soil fertility induces coordinated responses of multiple independent functional traits. Journal of Ecology, 103(2), 374–385. https://doi.org/10.1111/1365-2745.12366
Joseph, G. S., Seymour, C. L., Cumming, G. S., Cumming, D. H. M., & Mahlangu, Z. (2014). Termite mounds increase functional diversity of woody plants in African savannas. Ecosystems, 17(5), 808–819. https://doi.org/10.1007/s10021-014-9761-9
Kaplan, Z., J. Danihelka, J. Chrtek, J. Kirschner, K. Kubát, M. Štech, & J. Štěpánek (Eds.) (2019). Klíč ke květeně České republiky [Key to the flora of the Czech Republic] (2nd ed.). Academia, Praha: Czech Republic.
Kapralov, M. V., Smith, J. A. C., & Filatov, D. A. (2012). Rubisco evolution in C4 eudicots: An analysis of Amaranthaceae Sensu Lato. PLoS ONE, 7(12), e52974. https://doi.org/10.1371/journal.pone.0052974
Kattenborn, T., Fassnacht, F. E., & Schmidtlein, S. (2018). Differentiating plant functional types using reflectance: Which traits make the difference?Remote Sensing in Ecology and Conservation, 5(1), 5–19. https://doi.org/10.1002/rse2.86
Kattenborn, T., & Schmidtlein, S. (2019). Radiative transfer modelling reveals why canopy reflectance follows function. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43011-1
Kattge, J., Knorr, W., Raddatz, T., & Wirth, C. (2009). Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biology, 15(4), 976–991. https://doi.org/10.1111/j.1365-2486.2008.01744.x
Kavelenova, L. M., Rozno, S. A., Kireyeva, Y. V., & Smirnov, Y. V. (2007). K strukturno-funktsional'nym osobennostyam list'yev drevesnykh rasteniy v nasazhdeniyakh lesostepi. Byulleten' Samarskaya Luka, 16:3(21), 568–574.
Kearsley, E., Verbeeck, H., Hufkens, K., Van de Perre, F., Doetterl, S., Baert, G., … Huygens, D. (2016). Functional community structure of African monodominant Gilbertiodendron dewevrei forest influenced by local environmental filtering. Ecology and Evolution, 7(1), 295–304. https://doi.org/10.1002/ece3.2589
Kempel, A., Chrobock, T., Fischer, M., Rohr, R. P., & van Kleunen, M. (2013). Determinants of plant establishment success in a multispecies introduction experiment with native and alien species. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12727–12732. https://doi.org/10.1073/pnas.1300481110
Kerkhoff, A. J., Fagan, W. F., Elser, J. J., & Enquist, B. J. (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168(4), E103–E122. https://doi.org/10.1086/507879
Khalil, M. I., Gibson, D. J., Baer, S. G., & Willand, J. E. (2018). Functional diversity is more sensitive to biotic filters than phylogenetic diversity during community assembly. Ecosphere, 9(3), e02164.https://doi.org/10.1002/ecs2.2164
Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W., & Freschet, G. T. (2013). Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology, 27(5), 1254–1261. https://doi.org/10.1111/1365-2435.12116
Kirkup, D., Malcolm, P., Christian, G., & Paton, A. (2005). Towards a digital African flora. Taxon, 54(2), 457–466. https://doi.org/10.2307/25065373
Kisel, Y., Moreno-Letelier, A. C., Bogarín, D., Powell, M. P., Chase, M. W., & Barraclough, T. G. (2012). Testing the link between population genetic differentiation and clade diversification in Costa Rican orchids. Evolution, 66(10), 3035–3052. https://doi.org/10.1111/j.1558-5646.2012.01663.x
Kissling, W. D., Balslev, H., Baker, W. J., Dransfield, J., Göldel, B., Lim, J. Y., … Svenning, J.-C. (2019). PalmTraits 1.0, a species-level functional trait database of palms worldwide. Scientific Data, 6(1), 178. https://doi.org/10.1038/s41597-019-0189-0
Klein, T., Di Matteo, G., Rotenberg, E., Cohen, S., & Yakir, D. (2012). Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiology, 33(1), 26–36. https://doi.org/10.1093/treephys/tps116
Klimešová, J., & de Bello, F. (2009). CLO-PLA: The database of clonal and bud bank traits of Central European flora. Journal of Vegetation Science, 20(3), 511–516. https://doi.org/10.1111/j.1654-1103.2009.01050.x
Knauer, J., Zaehle, S., Medlyn, B. E., Reichstein, M., Williams, C. A., Migliavacca, M., … Linderson, M. L. (2017). Towards physiologically meaningful water-use efficiency estimates from eddy covariance data. Global Change Biology, 24(2), 694–710. https://doi.org/10.1111/gcb.13893
Koele, N., Dickie, I. A., Oleksyn, J., Richardson, S. J., & Reich, P. B. (2012). No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytologist, 196(3), 845–852. https://doi.org/10.1111/j.1469-8137.2012.04297.x
Koike, F. (2001). Plant traits as predictors of woody species dominance in climax forest communities. Journal of Vegetation Science, 12(3), 327–336. https://doi.org/10.2307/3236846
Komac, B., Pladevall, C., Domènech, M., & Fanlo, R. (2014). Functional diversity and grazing intensity in sub-alpine and alpine grasslands in Andorra. Applied Vegetation Science, 18(1), 75–85. https://doi.org/10.1111/avsc.12119
Kraft, N. J. B., Valencia, R., & Ackerly, D. D. (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322(5901), 580–582. https://doi.org/10.1126/science.1160662
Kumarathunge, D. P., Medlyn, B. E., Drake, J. E., Tjoelker, M. G., Aspinwall, M. J., Battaglia, M., … Way, D. A. (2019). Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytologist, 222(2), 768–784. https://doi.org/10.1111/nph.15668
Kuppler, J., Höfers, M. K., Trutschnig, W., Bathke, A. C., Eiben, J. A., Daehler, C. C., & Junker, R. R. (2017). Exotic flower visitors exploit large floral trait spaces resulting in asymmetric resource partitioning with native visitors. Functional Ecology, 31(12), 2244–2254. https://doi.org/10.1111/1365-2435.12932
Kurokawa, H., & Nakashizuka, T. (2008). Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology, 89(9), 2645–2656. https://doi.org/10.1890/07-1352.1
La Pierre, K. J., & Smith, M. D. (2014). Functional trait expression of grassland species shift with short- and long-term nutrient additions. Plant Ecology, 216(2), 307–318. https://doi.org/10.1007/s11258-014-0438-4
Laughlin, D. C., Fulé, P. Z., Huffman, D. W., Crouse, J., & Laliberté, E. (2011). Climatic constraints on trait-based forest assembly. Journal of Ecology, 99(6), 1489–1499. https://doi.org/10.1111/j.1365-2745.2011.01885.x
Lavergne, S., & Molofsky, J. (2007). Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 3883–3888. https://doi.org/10.1073/pnas.0607324104
Lavorel, S., Grigulis, K., Lamarque, P., Colace, M.-P., Garden, D., Girel, J., … Douzet, R. (2010). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 99(1), 135–147. https://doi.org/10.1111/j.1365-2745.2010.01753.x
Lens, F., Endress, M. E., Baas, P., Jansen, S., & Smets, E. (2008). Wood anatomy of Rauvolfioideae (Apocynaceae): A search for meaningful non-DNA characters at the tribal level. American Journal of Botany, 95, 1199–1215. https://doi.org/10.3732/ajb.0800159
Lens, F., Gasson, P., Smets, E., & Jansen, S. (2003). Comparative wood anatomy of epacrids (Styphelioideae, Ericaceae s.l.). Annals of Botany, 91, 835–857. https://doi.org/10.1093/aob/mcg089
Lens, F., Sperry, J. S., Christman, M. A., Choat, B., Rabaey, D., & Jansen, S. (2011). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190, 709–723. https://doi.org/10.1111/j.1469-8137.2010.03518.x
Letts, B., Lamb, E. G., Mischkolz, J. M., & Romo, J. T. (2015). Litter accumulation drives grassland plant community composition and functional diversity via leaf traits. Plant Ecology, 216, 357–370. https://doi.org/10.1007/s11258-014-0436-6
Lhotsky, B., Csecserits, A., Kovács, B., & Botta-Dukát, Z. (2016). New plant trait records of the Hungarian flora. Acta Botanica Hungarica, 58(3–4), 397–400. https://doi.org/10.1556/abot.58.2016.3-4.8
Li, R., Zhu, S., Chen, H. Y. H., John, R., Zhou, G., Zhang, D., … Ye, Q. (2015). Are functional traits a good predictor of global change impacts on tree species abundance dynamics in a subtropical forest?Ecology Letters, 18(11), 1181–1189. https://doi.org/10.1111/ele.12497
Li, X., Nie, Y., Song, X., Zhang, R., & Wang, G. (2011). Patterns of species diversity and functional diversity along a south-to north-facing slope in a sub-alpine meadow. Community Ecology, 12(2), 179–187.
Li, Y., & Shipley, B. (2018). Community divergence and convergence along experimental gradients of stress and disturbance. Ecology, 99(4), 775–781. https://doi.org/10.1002/ecy.2162
Liebergesell, M., Reu, B., Stahl, U., Freiberg, M., Welk, E., Kattge, J., … Wirth, C. (2016). Functional resilience against climate-driven extinctions – Comparing the functional diversity of European and North American tree floras. PLoS ONE, 11(2), e0148607. https://doi.org/10.1371/journal.pone.0148607
Lin, Y.-S., Medlyn, B. E., Duursma, R. A., Prentice, I. C., Wang, H., Baig, S., … Wingate, L. (2015). Optimal stomatal behaviour around the world. Nature Climate Change, 5(5), 459–464. https://doi.org/10.1038/nclimate2550
Lipowsky, A., Roscher, C., Schumacher, J., Michalski, S., Gubsch, M., Buchmann, N., … Schmid, B. (2015). Plasticity of functional traits of forb species in response to biodiversity. Perspectives in Plant Ecology, Evolution and Systematics, 17, 66–77. https://doi.org/10.1016/j.ppees.2014.11.003
Lohbeck, M., Poorter, L., Paz, H., Pla, L., van Breugel, M., Martínez-Ramos, M., & Bongers, F. (2012). Functional diversity changes during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 14(2), 89–96. https://doi.org/10.1016/j.ppees.2011.10.002
Louault, F., Pillar, V. D., Aufrère, J., Garnier, E., & Soussana, J. F. (2005). Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. Journal of Vegetation Science, 16(2), 151. https://doi.org/10.1658/1100-9233(2005)016[0151:ptafti]2.0.co;2
Lukeš, P., Stenberg, P., Rautiainen, M., Mõttus, M., & Vanhatalo, K. M. (2013). Optical properties of leaves and needles for boreal tree species in Europe. Remote Sensing Letters, 4(7), 667–676. https://doi.org/10.1080/2150704x.2013.782112
Lusk, C. H. (2019). Leaf functional trait variation in a humid temperate forest, and relationships with juvenile tree light requirements. PeerJ, 7, e6855. https://doi.org/10.7717/peerj.6855
Lusk, C. H., Kaneko, T., Grierson, E., & Clearwater, M. (2013). Correlates of tree species sorting along a temperature gradient in New Zealand rain forests: Seedling functional traits, growth and shade tolerance. Journal of Ecology, 101(6), 1531–1541. https://doi.org/10.1111/1365-2745.12152
Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R., van Bodegom, P. M., … Santiago, L. S. (2015). Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 24(6), 706–717. https://doi.org/10.1111/geb.12296
Malhado, A. C. M., Malhi, Y., Whittaker, R. J., Ladle, R. J., terSteege, H., Fabré, N. N., … Malhado, C. H. M. (2012). Drip-tips are associated with intensity of precipitation in the Amazon rain forest. Biotropica, 44(6), 728–737. https://doi.org/10.1111/j.1744-7429.2012.00868.x
Malhado, A. C. M., Malhi, Y., Whittaker, R. J., Ladle, R. J., terSteege, H., Phillips, O. L., … Laurance, W. F. (2009). Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences, 6(8), 1563–1576. https://doi.org/10.5194/bg-6-1563-2009
Malhado, A. C. M., Whittaker, R. J., Malhi, Y., Ladle, R. J., terSteege, H., Butt, N., … Ramírez, A. H., (2009). Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences, 6(8), 1577–1590. https://doi.org/10.5194/bg-6-1577-2009
Malhado, A. C. M., Whittaker, R. J., Malhi, Y., Ladle, R. J., Ter Steege, H., Phillips, O., … Ramírez-Angulo, H. (2010). Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecology and Biogeography, 19(6), 852–862. https://doi.org/10.1111/j.1466-8238.2010.00567.x
Manning, P., Newington, J. E., Robson, H. R., Saunders, M., Eggers, T., Bradford, M. A., … Rees, M. (2006). Decoupling the direct and indirect effects of nitrogen deposition on ecosystem function. Ecology Letters, 9(9), 1015–1024. https://doi.org/10.1111/j.1461-0248.2006.00959.x
Manzoni, S., Vico, G., Porporato, A., & Katul, G. (2013). Biological constraints on water transport in the soil–plant–atmosphere system. Advances in Water Resources, 51, 292–304. https://doi.org/10.1016/j.advwatres.2012.03.016
Martin, A. R., Doraisami, M., & Thomas, S. C. (2018). Global patterns in wood carbon concentration across the world's trees and forests. Nature Geoscience, 11(12), 915–920. https://doi.org/10.1038/s41561-018-0246-x
Martin, A. R., Hayes, F. J., Borden, K. A., Buchanan, S. W., Gordon, A. M., Isaac, M. E., & Thevathasan, N. V. (2019). Integrating nitrogen fixing structures into above- and belowground functional trait spectra in soy (Glycine max). Plant and Soil, 440(1–2), 53–69. https://doi.org/10.1007/s11104-019-04058-1
Martin, A. R., Rapidel, B., Roupsard, O., Van den Meersche, K., de Melo Virginio Filho, E., Barrios, M., & Isaac, M. E. (2017). Intraspecific trait variation across multiple scales: The leaf economics spectrum in coffee. Functional Ecology, 31(3), 604–612. https://doi.org/10.1111/1365-2435.12790
Martínez-Garza, C., Bongers, F., & Poorter, L. (2013). Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures?Forest Ecology and Management, 303, 35–45. https://doi.org/10.1016/j.foreco.2013.03.046
McCarthy, J. K., Dwyer, J. M., & Mokany, K. (2019). A regional-scale assessment of using metabolic scaling theory to predict ecosystem properties. Proceedings of the Royal Society B: Biological Sciences, 286. https://doi.org/10.1098/rspb.2019.2221
McFadden, I. R., Bartlett, M. K., Wiegand, T., Turner, B. L., Sack, L., Valencia, R., & Kraft, N. J. B. (2019). Disentangling the functional trait correlates of spatial aggregation in tropical forest trees. Ecology, 100(3), e02591. https://doi.org/10.1002/ecy.2591
Medeiros, J. S., Burns, J. H., Nicholson, J., Rogers, L., & Valverde-Barrantes, O. (2017). Decoupled leaf and root carbon economics is a key component in the ecological diversity and evolutionary divergence of deciduous and evergreen lineages of genus Rhododendron. American Journal of Botany, 104(6), 803–816. https://doi.org/10.3732/ajb.1700051
Medlyn, B. E., Badeck, F. W., De Pury, D. G. G., Barton, C. V. M., Broadmeadow, M., Ceulemans, R., … Jstbid, P. G. (1999). Effects of elevated [CO2] on photosynthesis in European forest species: A meta-analysis of model parameters. Plant, Cell & Environment, 22(12), 1475–1495. https://doi.org/10.1046/j.1365-3040.1999.00523.x
Meir, P., Kruijt, B., Broadmeadow, M., Barbosa, E., Kull, O., Carswell, F., … Jarvis, P. G. (2002). Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell and Environment, 25(3), 343–357. https://doi.org/10.1046/j.0016-8025.2001.00811.x
Mencuccini, M. (2003). The ecological significance of long-distance water transport: Short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant, Cell and Environment, 26(1), 163–182. https://doi.org/10.1046/j.1365-3040.2003.00991.x
Messier, J., McGill, B. J., & Lechowicz, M. J. (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13(7), 838–848. https://doi.org/10.1111/j.1461-0248.2010.01476.x
Messier, J., Violle, C., Enquist, B. J., Lechowicz, M. J., & McGill, B. J. (2018). Similarities and differences in intrapopulation trait correlations of co-occurring tree species: Consistent water use relationships amidst widely different correlation patterns. American Journal of Botany, 105(9), 1–14. https://doi.org/10.1002/ajb2.1146
Michaletz, S. T., & Johnson, E. A. (2006). A heat transfer model of crown scorch in forest fires. Canadian Journal of Forest Research, 36(11), 2839–2851. https://doi.org/10.1139/x06-158
Michelaki, C., Fyllas, N. M., Galanidis, A., Aloupi, M., Evangelou, E., Arianoutsou, M., & Dimitrakopoulos, P. G. (2019). An integrated phenotypic trait-network in thermo-Mediterranean vegetation describing alternative, coexisting resource-use strategies. Science of the Total Environment, 672, 583–592. https://doi.org/10.1016/j.scitotenv.2019.04.030
Milla, R., & Reich, P. B. (2011). Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Annals of Botany, 107(3), 455–465. https://doi.org/10.1093/aob/mcq261
Miller, J. E. D., Ives, A. R., Harrison, S. P., & Damschen, E. I. (2017). Early- and late-flowering guilds respond differently to landscape spatial structure. Journal of Ecology, 106(3), 1033–1045. https://doi.org/10.1111/1365-2745.12849
Minden, V., Deloy, A., Volkert, A. M., Leonhardt, S. D., & Pufal, G. (2017). Antibiotics impact plant traits, even at small concentrations. AoB PLANTS, 9(2). https://doi.org/10.1093/aobpla/plx010
Minden, V., & Gorschlüter, J. (2016). Comparison of native and non-native Impatiens species across experimental light and nutrient gradients. Plant Ecology and Evolution, 149(1), 59–72. https://doi.org/10.5091/plecevo.2016.1118
Minden, V., & Kleyer, M. (2011). Testing the effect-response framework: Key response and effect traits determining above-ground biomass of salt marshes. Journal of Vegetation Science, 22(3), 387–401. https://doi.org/10.1111/j.1654-1103.2011.01272.x
Minden, V., & Kleyer, M. (2014). Internal and external regulation of plant organ stoichiometry. Plant Biology, 16(5), 897–907. https://doi.org/10.1111/plb.12155
Minden, V., & Kleyer, M. (2015). Ecosystem multifunctionality of coastal marshes is determined by key plant traits. Journal of Vegetation Science, 26(4), 651–662. https://doi.org/10.1111/jvs.12276
Minden, V., & Olde Venterink, H. (2019). Plant traits and species interactions along gradients of N, P and K availabilities. Functional Ecology, 33(9), 1611–1626. https://doi.org/10.1111/1365-2435.13387
Minden, V., Schnetger, B., Pufal, G., & Leonhardt, S. D. (2018). Antibiotic-induced effects on scaling relationships and on plant element contents in herbs and grasses. Ecology and Evolution, 8(13), 6699–6713. https://doi.org/10.1002/ece3.4168
Moles, A. T., Ackerly, D. D., Webb, C. O., Tweddle, J. C., Dickie, J. B., Pitman, A. J., & Westoby, M. (2005). Factors that shape seed mass evolution. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10540–10544. https://doi.org/10.1073/pnas.0501473102
Moles, A. T., Warton, D. I., Warman, L., Swenson, N. G., Laffan, S. W., Zanne, A. E., … Leishman, M. R. (2009). Global patterns in plant height. Journal of Ecology, 97, 923–932. https://doi.org/10.1111/j.1365-2745.2009.01526.x
Moravcová, L., Pyšek, P., Jarošík, V., Havlíčková, V., & Zákravský, P. (2010). Reproductive characteristics of neophytes in the Czech Republic: Traits of invasive and non-invasive species. Preslia, 82, 365–390.
Moretti, M., & Legg, C. (2009). Combining plant and animal traits to assess community functional responses to disturbance. Ecography, 32(2), 299–309. https://doi.org/10.1111/j.1600-0587.2008.05524.x
Mori, A. S., Shiono, T., Haraguchi, T. F., Ota, A. T., Koide, D., Ohgue, T., … Gustafsson, L. (2015). Functional redundancy of multiple forest taxa along an elevational gradient: Predicting the consequences of non-random species loss. Journal of Biogeography, 42(8), 1383–1396. https://doi.org/10.1111/jbi.12514
Muir, C. D., Hangarter, R. P., Moyle, L. C., & Davis, P. A. (2013). Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon, sect. Lycopersicoides; Solanaceae). Plant, Cell & Environment, 37(6), 1415–1426. https://doi.org/10.1111/pce.12245
Müller, S. C., Overbeck, G. E., Pfadenhauer, J., & Pillar, V. D. (2006). Plant functional types of woody species related to fire disturbance in forest-grassland ecotones. Plant Ecology, 189(1), 1–14. https://doi.org/10.1007/s11258-006-9162-z
Nakahashi, C. D., Frole, K., & Sack, L. (2005). Bacterial leaf nodule symbiosis in Ardisia (Myrsinaceae): Does it contribute to seedling growth capacity? Plant Biology, 7(5), 495–500. https://doi.org/10.1055/s-2005-865853
Neuschulz, E. L., Mueller, T., Schleuning, M., & Böhning-Gaese, K. (2016). Pollination and seed dispersal are the most threatened processes of plant regeneration. Scientific Reports, 6. https://doi.org/10.1038/srep29839
Niinemets, Ü. (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82(2), 453. https://doi.org/10.2307/2679872
Niinemets, Ü., & Valladares, F. (2006). Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecological Monographs, 76(4), 521–547. https://doi.org/10.1890/0012-9615(2006)076[0521:ttsdaw]2.0.co;2
Nolan, R. H., Fairweather, K. A., Tarin, T., Santini, N. S., Cleverly, J., Faux, R., & Eamus, D. (2017). Divergence in plant water-use strategies in semiarid woody species. Functional Plant Biology, 44(11), 1134. https://doi.org/10.1071/fp17079
Nolan, R. H., Hedo, J., Arteaga, C., Sugai, T., & Resco de Dios, V. (2018). Physiological drought responses improve predictions of live fuel moisture dynamics in a Mediterranean forest. Agricultural and Forest Meteorology, 263, 417–427. https://doi.org/10.1016/j.agrformet.2018.09.011
Núñez-Florez, R., Pérez-Gómez, U., & Fernández-Méndez, F. (2019). Functional diversity criteria for selecting urban trees. Urban Forestry & Urban Greening, 38, 251–266. https://doi.org/10.1016/j.ufug.2019.01.005
Ogaya, R., & Peñuelas, J. (2003). Comparative field study of Quercus ilex and Phillyrea latifolia: Photosynthetic response to experimental drought conditions. Environmental and Experimental Botany, 50(2), 137–148. https://doi.org/10.1016/s0098-8472(03)00019-4
Oliveira, R. A. C., Marques, R., & Marques, M. C. M. (2019). Plant diversity and local environmental conditions indirectly affect litter decomposition in a tropical forest. Applied Soil Ecology, 134, 45–53. https://doi.org/10.1016/j.apsoil.2018.09.016
Olson, M. E., Anfodillo, T., Rosell, J. A., Petit, G., Crivellaro, A., Isnard, S., … Castorena, M. (2014). Universal hydraulics of the flowering plants: Vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecology Letters, 17(8), 988–997. https://doi.org/10.1111/ele.12302
Olson, M. E., Rosell, J. A., Zamora Muñoz, S., & Castorena, M. (2018). Carbon limitation, stem growth rate and the biomechanical cause of Corner's rules. Annals of Botany, 122(4), 583–592. https://doi.org/10.1093/aob/mcy089
Olson, M. E., Soriano, D., Rosell, J. A., Anfodillo, T., Donoghue, M. J., Edwards, E. J., … Méndez-Alonzo, R. (2018). Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 115(29), 7551–7556. https://doi.org/10.1073/pnas.1721728115
Onoda, Y., Westoby, M., Adler, P. B., Choong, A. M. F., Clissold, F. J., Cornelissen, J. H. C., … Yamashita, N. (2011). Global patterns of leaf mechanical properties. Ecology Letters, 14(3), 301–312. https://doi.org/10.1111/j.1461-0248.2010.01582.x
Onoda, Y., Wright, I. J., Evans, J. R., Hikosaka, K., Kitajima, K., Niinemets, Ü., … Westoby, M. (2017). Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 214(4), 1447–1463. https://doi.org/10.1111/nph.14496
Onstein, R. E., Carter, R. J., Xing, Y., & Linder, H. P. (2014). Diversification rate shifts in the Cape Floristic Region: The right traits in the right place at the right time. Perspectives in Plant Ecology, Evolution and Systematics, 16(6), 331–340. https://doi.org/10.1016/j.ppees.2014.08.002
Ordoñez, J. C., van Bodegom, P. M., Witte, J.-P. M., Bartholomeus, R. P, vanHal, J. R., & Aerts, R. (2010). Plant strategies in relation to resource supply in mesic to wet environments: Does theory mirror nature? The American Naturalist, 175(2), 225–239. https://doi.org/10.1086/649582
OReilly-Nugent, A., Wandrag, E., Catford, J., Gruber, B., Driscoll, D., & Duncan, R. (2019). Measuring competitive impact: Joint-species modelling of invaded plant communities. Journal of Ecology. https://doi.org/10.1111/1365-2745.13280
Ostonen, I., Rosenvald, K., Helmisaari, H.-S., Godbold, D., Parts, K., Uri, V., & Lõhmus, K. (2013). Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: Its role in changing environments. Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00335
Ostonen, I., Tedersoo, L., Suvi, T., & Lõhmus, K. (2009). Does a fungal species drive ectomycorrhizal root traits in Alnus spp.? Canadian Journal of Forest Research, 39(10), 1787–1796. https://doi.org/10.1139/x09-093
Ottaviani, G., Marcantonio, M., & Mucina, L. (2016). Soil depth shapes plant functional diversity in granite outcrops vegetation of Southwestern Australia. Plant Ecology & Diversity, 9(3), 263–276. https://doi.org/10.1080/17550874.2016.1211192
Pahl, A. T., Kollmann, J., Mayer, A., & Haider, S. (2013). No evidence for local adaptation in an invasive alien plant: Field and greenhouse experiments tracing a colonization sequence. Annals of Botany, 112(9), 1921–1930. https://doi.org/10.1093/aob/mct246
Paine, C. E. T., Amissah, L., Auge, H., Baraloto, C., Baruffol, M., Bourland, N., … Hector, A. (2015). Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology, 103(4), 978–989. https://doi.org/10.1111/1365-2745.12401
Paule, J., Gregor, T., Schmidt, M., Gerstner, E.-M., Dersch, G., Dressler, S., … Zizka, G. (2017). Chromosome numbers of the flora of Germany—A new online database of georeferenced chromosome counts and flow cytometric ploidy estimates. Plant Systematics and Evolution, 303(8), 1123–1129. https://doi.org/10.1007/s00606-016-1362-y
Pausas, J. G., Lamont, B. B., Paula, S., Appezzato-da-Glória, B., & Fidelis, A. (2018). Unearthing belowground bud banks in fire-prone ecosystems. New Phytologist, 217(4), 1435–1448. https://doi.org/10.1111/nph.14982
Pausas, J. G., Pratt, R. B., Keeley, J. E., Jacobsen, A. L., Ramirez, A. R., Vilagrosa, A., … Davis, S. D. (2015). Towards understanding resprouting at the global scale. New Phytologist, 209(3), 945–954. https://doi.org/10.1111/nph.13644
Peco, B., dePablos, I., Traba, J., & Levassor, C. (2005). The effect of grazing abandonment on species composition and functional traits: The case of dehesa grasslands. Basic and Applied Ecology, 6(2), 175–183. https://doi.org/10.1016/j.baae.2005.01.002
Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., … Terradas, J. (2017). Impacts of global change on Mediterranean forests and their services. Forests, 8(12), 463. https://doi.org/10.3390/f8120463
Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., … Terradas, J. (2018). Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environmental and Experimental Botany, 152, 49–59. https://doi.org/10.1016/j.envexpbot.2017.05.012
Peñuelas, J., Sardans, J., Llusia, J., Owen, S. M., Carnicer, J., Giambelluca, T. W., … Niinemets, Ü. (2009). Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Global Change Biology, 16(8), 2171–2185. https://doi.org/10.1111/j.1365-2486.2009.02054.x
Petter, G., Wagner, K., Wanek, W., Sánchez Delgado, E. J., Zotz, G., Cabral, J. S., & Kreft, H. (2016). Functional leaf traits of vascular epiphytes: Vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Functional Ecology, 30(2), 188–198. https://doi.org/10.1111/1365-2435.12490
Pierce, S., Brusa, G., Sartori, M., & Cerabolini, B. E. L. (2012). Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Annals of Botany, 109(5), 1047–1053. https://doi.org/10.1093/aob/mcs021
Pierce, S., Ceriani, R. M., De Andreis, R., Luzzaro, A., & Cerabolini, B. (2007). The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosystems, 141(3), 337–343. https://doi.org/10.1080/11263500701627695
Pierce, S., Vagge, I., Brusa, G., & Cerabolini, B. E. L. (2014). The intimacy between sexual traits and Grime's CSR strategies for orchids coexisting in semi-natural calcareous grassland at the Olive Lawn. Plant Ecology, 215(5), 495–505. https://doi.org/10.1007/s11258-014-0318-y
Pinho, B. X., deMelo, F. P. L., Arroyo-Rodríguez, V., Pierce, S., Lohbeck, M., & Tabarelli, M. (2017). Soil-mediated filtering organizes tree assemblages in regenerating tropical forests. Journal of Ecology, 106(1), 137–147. https://doi.org/10.1111/1365-2745.12843
Pisek, J., Sonnentag, O., Richardson, A. D., & Mõttus, M. (2013). Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal broadleaf tree species?Agricultural and Forest Meteorology, 169, 186–194. https://doi.org/10.1016/j.agrformet.2012.10.011
Pomogaybin, A. V., & Pomogaybin, Y. A. Kizucheniyu bioekologicheskikh osobennostey predstaviteley roda Juglans L. pri introduktsii v lesostepi Srednego Povolzhya Sovremennaya botanika v Rossii. Trudy XIII syezda Russkogo botanicheskogo obshchestva (pp. 156–158).
Poorter, H., Jagodzinski, A. M., Ruiz-Peinado, R., Kuyah, S., Luo, Y., Oleksyn, J., … Sack, L. (2015). How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 208, 736–749. https://doi.org/10.1111/nph.13571
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 182(3), 565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x
Poorter, L., & Bongers, F. (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87(7), 1733–1743. https://doi.org/10.1890/0012-9658(2006)87[1733:ltagpo]2.0.co;2
Powers, J. S., & Tiffin, P. (2010). Plant functional type classifications in tropical dry forests in Costa Rica: Leaf habit versus taxonomic approaches. Functional Ecology, 24(4), 927–936. https://doi.org/10.1111/j.1365-2435.2010.01701.x
Prentice, I. C., Meng, T., Wang, H., Harrison, S. P., Ni, J., & Wang, G. (2010). Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. New Phytologist, 190(1), 169–180. https://doi.org/10.1111/j.1469-8137.2010.03579.x
Preston, K. A., Cornwell, W. K., & DeNoyer, J. L. (2006). Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist, 170(4), 807–818. https://doi.org/10.1111/j.1469-8137.2006.01712.x
Price, C. A., & Enquist, B. J. (2007). Scaling mass and morphology in leaves: An extension of the WBE model. Ecology, 88(5), 1132–1141. https://doi.org/10.1890/06-1158
Puglielli, G., & Varone, L. (2018). Inherent variation of functional traits in winter and summer leaves of Mediterranean seasonal dimorphic species: Evidence of a ‘within leaf cohort’ spectrum. AoB PLANTS, 10(3). https://doi.org/10.1093/aobpla/ply027
Purcell, A. S. T., Lee, W. G., Tanentzap, A. J., & Laughlin, D. C. (2018). Fine root traits are correlated with flooding duration while aboveground traits are related to grazing in an ephemeral wetland. Wetlands, 39(2), 291–302. https://doi.org/10.1007/s13157-018-1084-8
Quitián, M., Santillán, V., Espinosa, C. I., Homeier, J., Böhning-Gaese, K., Schleuning, M., & Neuschulz, E. L. (2018). Direct and indirect effects of plant and frugivore diversity on structural and functional components of fruit removal by birds. Oecologia, 189(2), 435–445. https://doi.org/10.1007/s00442-018-4324-y
Raabe, K., Pisek, J., Sonnentag, O., & Annuk, K. (2015). Variations of leaf inclination angle distribution with height over the growing season and light exposure for eight broadleaf tree species. Agricultural and Forest Meteorology, 214–215, 2–11. https://doi.org/10.1016/j.agrformet.2015.07.008
Raevel, V., Anthelme, F., Meneses, R. I., & Munoz, F. (2018). Cushion-plant protection determines guild-dependent plant strategies in high-elevation peatlands of the Cordillera Real, Bolivian Andes. Perspectives in Plant Ecology, Evolution and Systematics, 30, 103–114. https://doi.org/10.1016/j.ppees.2017.09.006
Raevel, V., Violle, C., & Munoz, F. (2012). Mechanisms of ecological succession: Insights from plant functional strategies. Oikos, 121(11), 1761–1770. https://doi.org/10.1111/j.1600-0706.2012.20261.x
Reich, P. B., Oleksyn, J., & Wright, I. J. (2009). Leaf phosphorus influences the photosynthesis–nitrogen relation: A cross-biome analysis of 314 species. Oecologia, 160(2), 207–212. https://doi.org/10.1007/s00442-009-1291-3
Reich, P. B., Tjoelker, M. G., Pregitzer, K. S., Wright, I. J., Oleksyn, J., & Machado, J.-L. (2008). Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 11(8), 793–801. https://doi.org/10.1111/j.1461-0248.2008.01185.x
Richardson, S. J., Allen, R. B., Buxton, R. P., Easdale, T. A., Hurst, J. M., Morse, C. W., … Peltzer, D. A. (2013). Intraspecific relationships among wood density, leaf structural traits and environment in four co-occurring species of Nothofagus in New Zealand. PLoS ONE, 8(3), e58878. https://doi.org/10.1371/journal.pone.0058878
Richardson, S. J., Laughlin, D. C., Lawes, M. J., Holdaway, R. J., Wilmshurst, J. M., Wright, M., … McGlone, M. S. (2015). Functional and environmental determinants of bark thickness in fire-free temperate rain forest communities. American Journal of Botany, 102(10), 1590–1598. https://doi.org/10.3732/ajb.1500157
Richardson, S. J., Williams, P. A., Mason, N. W. H., Buxton, R. P., Courtney, S. P., Rance, B. D., … Wiser, S. K. (2012). Rare species drive local trait diversity in two geographically disjunct examples of a naturally rare alpine ecosystem in New Zealand. Journal of Vegetation Science, 23(4), 626–639. https://doi.org/10.1111/j.1654-1103.2012.01396.x
Roddy, A. B., Jiang, G., Cao, K., Simonin, K. A., & Brodersen, C. R. (2019). Hydraulic traits are more diverse in flowers than in leaves. New Phytologist, 223, 193–203. https://doi.org/10.1111/nph.15749
Rodrigues, A., Bones, F., Schneiders, A., Oliveira, L., Vibrans, A., & Gasper, A. (2018). Plant trait dataset for tree-like growth forms species of the subtropical Atlantic rain forest in Brazil. Data, 3(2), 16. https://doi.org/10.3390/data3020016
Rogers, A., Serbin, S. P., Ely, K. S., Sloan, V. L., & Wullschleger, S. D. (2017). Terrestrial biosphere models underestimate photosynthetic capacity and CO2 assimilation in the Arctic. New Phytologist, 216(4), 1090–1103. https://doi.org/10.1111/nph.14740
Rolo, V., López-Díaz, M. L., & Moreno, G. (2012). Shrubs affect soil nutrients availability with contrasting consequences for pasture understory and tree overstory production and nutrient status in Mediterranean grazed open woodlands. Nutrient Cycling in Agroecosystems, 93(1), 89–102. https://doi.org/10.1007/s10705-012-9502-4
Rolo, V., Olivier, P., & van Aarde, R. (2016). Seeded pioneer die-offs reduce the functional trait space of new-growth coastal dune forests. Forest Ecology and Management, 377, 26–35. https://doi.org/10.1016/j.foreco.2016.06.039
Ronzhina, D. A., & P'Yankov, V. I. (2001). Structure of the photosynthetic apparatus in leaves of freshwaterhydrophytes: 2. Quantitative characterization of leaf mesophyll and the functional activity of leaves with different degrees of submersion. Russian Journal of Plant Physiology, 48(6), 723–732. https://doi.org/10.1023/a:1012544105453
Roscher, C., Schmid, B., Buchmann, N., Weigelt, A., & Schulze, E.-D. (2011). Legume species differ in the responses of their functional traits to plant diversity. Oecologia, 165, 437–452. https://doi.org/10.1007/s00442-010-1735-9
Rosell, J. A. (2016). Bark thickness across the angiosperms: More than just fire. New Phytologist, 211(1), 90–102. https://doi.org/10.1111/nph.13889
Rosell, J. A., Gleason, S., Méndez-Alonzo, R., Chang, Y., & Westoby, M. (2013). Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytologist, 201(2), 486–497. https://doi.org/10.1111/nph.12541
Rosell, J. A., & Olson, M. E. (2014). Do lianas really have wide vessels? Vessel diameter–stem length scaling in non-self-supporting plants. Perspectives in Plant Ecology, Evolution and Systematics, 16(6), 288–295. https://doi.org/10.1016/j.ppees.2014.08.001
Rosell, J. A., Olson, M. E., Anfodillo, T., & Martínez-Méndez, N. (2017). Exploring the bark thickness-stem diameter relationship: Clues from lianas, successive cambia, monocots and gymnosperms. New Phytologist, 215(2), 569–581. https://doi.org/10.1111/nph.14628
Rossi, C. (2017). Three morphological plant traits in the Swiss National Park and surroundings. Retrieved from http://www.parcs.ch/snp/mmd_fullentry.php?docu_xml:id=37905
Royal Botanic Gardens Kew. (2019). Seed Information Database (SID). Version 7.1. Retrieved from http://data.kew.org/sid/
Rüger, N., Berger, U., Hubbell, S. P., Vieilledent, G., & Condit, R. (2011). Growth strategies of tropical tree species: Disentangling light and size effects. PLoS ONE, 6(9), e25330. https://doi.org/10.1371/journal.pone.0025330
Rüger, N., Huth, A., Hubbell, S. P., & Condit, R. (2009). Response of recruitment to light availability across a tropical lowland rain forest community. Journal of Ecology, 97(6), 1360–1368. https://doi.org/10.1111/j.1365-2745.2009.01552.x
Rüger, N., Huth, A., Hubbell, S. P., & Condit, R. (2011). Determinants of mortality across a tropical lowland rainforest community. Oikos, 120(7), 1047–1056. https://doi.org/10.1111/j.1600-0706.2010.19021.x
Rumpf, S. B., Hülber, K., Klonner, G., Moser, D., Schütz, M., Wessely, J., … Dullinger, S. (2018). Range dynamics of mountain plants decrease with elevation. Proceedings of the National Academy of Sciences of the United States of America, 115(8), 1848–1853. https://doi.org/10.1073/pnas.1713936115
Sanda, V., Bita-Nicolae, C. D., & Barabas, N. (2003). The flora of spontane and cultivated cormophytes from Romania (in Romanian) (p. 316). Bacău: Editura Ion Borcea.
Sandel, B., Corbin, J. D., & Krupa, M. (2011). Using plant functional traits to guide restoration: A case study in California coastal grassland. Ecosphere, 2(2), art23. https://doi.org/10.1890/es10-00175.1
Scalon, M. C., Haridasan, M., & Franco, A. C. (2017). Influence of long-term nutrient manipulation on specific leaf area and leaf nutrient concentrations in savanna woody species of contrasting leaf phenologies. Plant and Soil, 421(1–2), 233–244. https://doi.org/10.1007/s11104-017-3437-0
Schall, P., Lödige, C., Beck, M., & Ammer, C. (2012). Biomass allocation to roots and shoots is more sensitive to shade and drought in European beech than in Norway spruce seedlings. Forest Ecology and Management, 266, 246–253. https://doi.org/10.1016/j.foreco.2011.11.017
Scherer-Lorenzen, M., Schulze, E., Don, A., Schumacher, J., & Weller, E. (2007). Exploring the functional significance of forest diversity: A new long-term experiment with temperate tree species (BIOTREE). Perspectives in Plant Ecology, Evolution and Systematics, 9(2), 53–70. https://doi.org/10.1016/j.ppees.2007.08.002
Schmitt, M., Mehltreter, K., Sundue, M., Testo, W., Watanabe, T., & Jansen, S. (2017). The evolution of aluminum accumulation in ferns and lycophytes. American Journal of Botany, 104(4), 573–583. https://doi.org/10.3732/ajb.1600381
Schroeder-Georgi, T., Wirth, C., Nadrowski, K., Meyer, S. T., Mommer, L., & Weigelt, A. (2015). From pots to plots: Hierarchical trait-based prediction of plant performance in a mesic grassland. Journal of Ecology, 104(1), 206–218. https://doi.org/10.1111/1365-2745.12489
Schuldt, B., Leuschner, C., Brock, N., & Horna, V. (2013). Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. Tree Physiology, 33(2), 161–174. https://doi.org/10.1093/treephys/tps122
Schurr, F. M., Midgley, G. F., Rebelo, A. G., Reeves, G., Poschlod, P., & Higgins, S. I. (2007). Colonization and persistence ability explain the extent to which plant species fill their potential range. Global Ecology and Biogeography, 16(4), 449–459. https://doi.org/10.1111/j.1466-8238.2006.00293.x
Schweingruber, F. H., & Landolt, W. (2005). The xylem database (updated). Birmensdorf, Switzerland: Swiss Federal Research Institute, WSL, Birmensdorf, Switzerland.
Seymour, C. L., Milewski, A. V., Mills, A. J., Joseph, G. S., Cumming, G. S., Cumming, D. H. M., & Mahlangu, Z. (2014). Do the large termite mounds of Macrotermes concentrate micronutrients in addition to macronutrients in nutrient-poor African savannas? Soil Biology and Biochemistry, 68, 95–105. https://doi.org/10.1016/j.soilbio.2013.09.022
Sfair, J. C., deBello, F., deFrança, T. Q., Baldauf, C., & Tabarelli, M. (2018). Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest. Environmental Research Letters, 13(2), 025005. https://doi.org/10.1088/1748-9326/aa9f5e
Sheremetiev, S. N., & Chebotareva, K. E. (2018). Modern and cretaceous-cenozoic diversification of angiosperms. Biology Bulletin Reviews, 8(5), 351–374. https://doi.org/10.1134/s2079086418050079
Shiodera, S., Rahajoe, J. S., & Kohyama, T. (2008). Variation in longevity and traits of leaves among co-occurring understorey plants in a tropical montane forest. Journal of Tropical Ecology, 24(2), 121–133. https://doi.org/10.1017/s0266467407004725
Shipley, B. (2002). Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: Relationship with daily irradiance. Functional Ecology, 16(5), 682–689. https://doi.org/10.1046/j.1365-2435.2002.00672.x
Shovon, T., Rozendaal, D., Gagnon, D., Gendron, F., Vetter, M., & Vanderwel, M. (2019). Plant communities on nitrogen-rich soil are less sensitive to soil moisture than plant communities on nitrogen-poor soil. Journal of Ecology. https://doi.org/10.1111/1365-2745.13251
Siebenkäs, A., Schumacher, J., & Roscher, C. (2015). Phenotypic plasticity to light and nutrient availability alters functional trait ranking across eight perennial grassland species. AoB PLANTS, 7, 1–15. https://doi.org/10.1093/aobpla/plv029
Siefert, A. (2011). Spatial patterns of functional divergence in old-field plant communities. Oikos, 121(6), 907–914. https://doi.org/10.1111/j.1600-0706.2011.19706.x
Siefert, A., Fridley, J. D., & Ritchie, M. E. (2014). Community functional responses to soil and climate at multiple spatial scales: When does intraspecific variation matter?PLoS ONE, 9(10), e111189. https://doi.org/10.1371/journal.pone.0111189
Silva, M. C., Teodoro, G. S., Bragion, E. F. A., & van denBerg, E. (2019). The role of intraspecific trait variation in the occupation of sharp forest-savanna ecotones. Flora, 253, 35–42. https://doi.org/10.1016/j.flora.2019.03.003
Silva, V., Catry, F. X., Fernandes, P. M., Rego, F. C., Paes, P., Nunes, L., … Bugalho, M. N. (2019). Effects of grazing on plant composition, conservation status and ecosystem services of Natura 2000 shrub-grassland habitat types. Biodiversity and Conservation, 28(5), 1205–1224. https://doi.org/10.1007/s10531-019-01718-7
Sitzia, T., Dainese, M., Krüsi, B. O., & McCollin, D. (2017). Landscape metrics as functional traits in plants: Perspectives from a glacier foreland. PeerJ, 5, e3552. https://doi.org/10.7717/peerj.3552
Sitzia, T., Michielon, B., Iacopino, S., & Kotze, D. J. (2016). Population dynamics of the endangered shrub Myricaria germanica in a regulated Alpine river is influenced by active channel width and distance to check dams. Ecological Engineering, 95, 828–838. https://doi.org/10.1016/j.ecoleng.2016.06.066
Sjöman, H., Hirons, A. D., & Bassuk, N. L. (2015). Urban forest resilience through tree selection—Variation in drought tolerance in Acer. Urban Forestry & Urban Greening, 14(4), 858–865. https://doi.org/10.1016/j.ufug.2015.08.004
Slot, M., Rey-Sánchez, C., Winter, K., & Kitajima, K. (2014). Trait-based scaling of temperature-dependent foliar respiration in a species-rich tropical forest canopy. Functional Ecology, 28(5), 1074–1086. https://doi.org/10.1111/1365-2435.12263
Slot, M., & Winter, K. (2017). In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regime. New Phytologist, 214(3), 1103–1117. https://doi.org/10.1111/nph.14469
Smith, N. G., & Dukes, J. S. (2017). LCE: Leaf carbon exchange data set for tropical, temperate, and boreal species of North and Central America. Ecology, 98(11), 2978–2978. https://doi.org/10.1002/ecy.1992
Smith, N. G., Pold, G., Goranson, C., & Dukes, J. S. (2016). Characterizing the drivers of seedling leaf gas exchange responses to warming and altered precipitation: Indirect and direct effects. AoB PLANTS, 8, plw066. https://doi.org/10.1093/aobpla/plw066
Smith, S. W., Woodin, S. J., Pakeman, R. J., Johnson, D., & van derWal, R. (2014). Root traits predict decomposition across a landscape-scale grazing experiment. New Phytologist, 203(3), 851–862. https://doi.org/10.1111/nph.12845
Soboleski, V. F., Higuchi, P., Silva, A. C. D., Loebens, R., Souza, K., Buzzi Junior, F., … Dallabrida, J. P. (2017). Variação de atributos funcionais do componente arbóreo em função de gradientes edáficos em uma floresta nebular no sul do Brasil. Rodriguésia, 68(2), 291–300. https://doi.org/10.1590/2175-7860201768201
Sodhi, D. S., Livingstone, S. W., Carboni, M., & Cadotte, M. W. (2019). Plant invasion alters trait composition and diversity across habitats. Ecology and Evolution, 9, 6199–6210. https://doi.org/10.1002/ece3.5130
Soler Martin, M., Bonet, J. A., Martínez De Aragón, J., Voltas, J., Coll, L., & Resco De Dios, V. (2017). Crown bulk density and fuel moisture dynamics in Pinus pinaster stands are neither modified by thinning nor captured by the Forest Fire Weather Index. Annals of Forest Science, 74. https://doi.org/10.1007/s13595-017-0650-1
Soudzilovskaia, N. A., Elumeeva, T. G., Onipchenko, V. G., Shidakov, I. I., Salpagarova, F. S., Khubiev, A. B., … Cornelissen, J. H. C. (2013). Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18180–18184. https://doi.org/10.1073/pnas.1310700110
Souza, K., Higuchi, P., Silva, A. C. D., Schimalski, M. B., Loebens, R., Buzzi Júnior, F., … Rosa, A. D. (2017). Partição de nicho por grupos funcionais de espécies arbóreas em uma floresta subtropical. Rodriguésia, 68(4), 1165–1175. https://doi.org/10.1590/2175-7860201768401
Spasojevic, M. J., & Suding, K. N. (2012). Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology, 100(3), 652–661. https://doi.org/10.1111/j.1365-2745.2011.01945.x
Spasojevic, M. J., Turner, B. L., & Myers, J. A. (2016). When does intraspecific trait variation contribute to functional beta-diversity?Journal of Ecology, 104(2), 487–496. https://doi.org/10.1111/1365-2745.12518
Staples, T. L., Dwyer, J. M., England, J. R., & Mayfield, M. M. (2019). Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Global Ecology and Biogeography, 28(10), 1417–1429. https://doi.org/10.1111/geb.12962
Steyn, C., Greve, M., Robertson, M. P., Kalwij, J. M., & leRoux, P. C. (2016). Alien plant species that invade high elevations are generalists: Support for the directional ecological filtering hypothesis. Journal of Vegetation Science, 28(2), 337–346. https://doi.org/10.1111/jvs.12477
Swaine, E. K. (2007). Ecological and evolutionary drivers of plant community assembly in a Bornean rain forest. PhD thesis, University of Aberdeen, Aberdeen.
Swenson, N. G., Anglada-Cordero, P., & Barone, J. A. (2010). Deterministic tropical tree community turnover: Evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society B: Biological Sciences, 278(1707), 877–884. https://doi.org/10.1098/rspb.2010.1369
Takkis, K. (2014). Changes in plant species richness and population performance in response to habitat loss and fragmentation. PhD, University Tartu. Retrieved from http://hdl.handle.net/10062/39546 (Dissertationes Biologicae Universitatis Tartuensis 255, 2014-04-07.).
Tavşanoğlu, Ç., & Pausas, J. G. (2018). A functional trait database for Mediterranean Basin plants. Scientific Data, 5. https://doi.org/10.1038/sdata.2018.135
Tedersoo, L., Laanisto, L., Rahimlou, S., Toussaint, A., Hallikma, T., & Pärtel, M. (2018). Global database of plants with root-symbiotic nitrogen fixation: NodDB. Journal of Vegetation Science, 29(3), 560–568. https://doi.org/10.1111/jvs.12627
The Tree of Sex Consortium, Ashman, T.-L., Bachtrog, D., Blackmon, H., Goldberg, E., Hahn, M., … Vamosi, J. (2014). Tree of sex: A database of sexual systems. Scientific Data, 1, 140015. https://doi.org/10.1038/sdata.2014.15
Thomas, E., Alcazar, C., Moscoso, H. L. G., Osorio, L. F., Salgado, B., Gonzalez, M., … Ramirez, W. (2017). The importance of species selection and seed sourcing in forest restoration for enhancing adaptive potential to climate change: Colombian tropical dry forest as a model. CBD Technical Series, 89, 122–134.
Thomas, S. C., & Martin, A. R. (2012). Wood carbon content database. Retrieved from http://dx.doi.org/10.5061/dryad.69sg2
Tng, D. Y. P., Jordan, G. J., & Bowman, D. M. J. S. (2013). Plant traits demonstrate that temperate and tropical giant eucalypt forests are ecologically convergent with rainforest not savanna. PLoS ONE, 8(12), e84378. https://doi.org/10.1371/journal.pone.0084378
Torca, M., Campos, J. A., & Herrera, M. (2019). Species composition and plant traits of south Atlantic European coastal dunes and other comparative data. Data in Brief, 22, 207–213. https://doi.org/10.1016/j.dib.2018.12.005
Torres-Ruiz, J. M., Cochard, H., Fonseca, E., Badel, E., Gazarini, L., & Vaz, M. (2017). Differences in functional and xylem anatomical features allow Cistus species to co-occur and cope differently with drought in the Mediterranean region. Tree Physiology, 37(6), 755–766. https://doi.org/10.1093/treephys/tpx013
Tribouillois, H., Fort, F., Cruz, P., Charles, R., Flores, O., Garnier, E., & Justes, E. (2015). A functional characterisation of a wide range of cover crop species: Growth and nitrogen acquisition rates, leaf traits and ecological strategies. PLoS ONE, 10(3), e0122156. https://doi.org/10.1371/journal.pone.0122156
Usoltsev, Vladimir. (2010). Фитомасса и первичная продукция лесов Евразии = Eurasian forest biomass and primary production data / В. А. Усольцев; [отв. ред. С. Г. Шиятов]; Рос. акад. наук, Урал. отд-ние, Ботан. сад УрО РАН, Урал. гос. лесотехн. ун-т. - Екатеринбург: УрО РАН, 570 с. - Парал. тит. англ. - Библиогр.: с. 520.
van Bodegom, P. M., Sorrell, B. K., Oosthoek, A., Bakke, C., & Aerts, R. (2008). Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology, 89(1), 193–204. https://doi.org/10.1890/07-0390.1
Van Cleemput, E., Roberts, D. A., Honnay, O., & Somers, B. (2019). A novel procedure for measuring functional traits of herbaceous species through field spectroscopy. Methods in Ecology and Evolution, 10(8), 1332–1338. https://doi.org/10.1111/2041-210x.13237
van deWeg, M. J., Meir, P., Grace, J., & Atkin, O. K. (2009). Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecology & Diversity, 2(3), 243–254. https://doi.org/10.1080/17550870903518045
van deWeg, M. J., Meir, P., Grace, J., & Ramos, G. D. (2011). Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia, 168(1), 23–34. https://doi.org/10.1007/s00442-011-2068-z
Van der Plas, F., Howison, R., Reinders, J., Fokkema, W., & Olff, H. (2013). Functional traits of trees on and off termite mounds: Understanding the origin of biotically-driven heterogeneity in savannas. Journal of Vegetation Science, 24(2), 227–238. https://doi.org/10.1111/j.1654-1103.2012.01459.x
van derSande, M. T., Arets, E. J. M. M., Peña-Claros, M., Hoosbeek, M. R., Cáceres-Siani, Y., van derHout, P., & Poorter, L. (2017). Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Functional Ecology, 32(2), 461–474. https://doi.org/10.1111/1365-2435.12968
Vanselow, K. A., Samimi, C., & Breckle, S.-W. (2016). Preserving a comprehensive vegetation knowledge base – An evaluation of four historical soviet vegetation maps of the Western Pamirs (Tajikistan). PLoS ONE, 11(2), e0148930. https://doi.org/10.1371/journal.pone.0148930
Vásquez-Valderrama, M. (2016). Efecto de especies con potencial invasor en procesos de regulación hídrica del suelo en un ecosistema seco tropical. Maestría en Manejo, Uso y Conservación del Bosque, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia.
Vassilev, K., Pedashenko, H., Nikolov, S. C., Apostolova, I., & Dengler, J. (2011). Effect of land abandonment on the vegetation of upland semi-natural grasslands in the Western Balkan Mts., Bulgaria. Plant Biosystems,145 (3), 654–665. https://doi.org/10.1080/11263504.2011.601337
Verdier, B., Jouanneau, I., Simonnet, B., Rabin, C., Van Dooren, T. J. M., Delpierre, N., … Le Galliard, J.-F. (2014). Climate and atmosphere simulator for experiments on ecological systems in changing environments. Environmental Science & Technology, 48(15), 8744–8753. https://doi.org/10.1021/es405467s
Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F., & Jackson, R. B. (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82(2), 205–220. https://doi.org/10.1890/11-0416.1
Von Holle, B., & Simberloff, D. (2004). Testing Fox's assembly rule: Does plant invasion depend on recipient community structure?Oikos, 105(3), 551–563. https://doi.org/10.1111/j.0030-1299.2004.12597.x
Wagenführ, R. (2007). Holzatlas (Vol. 6, neu bearbeitete und erweiterte Auflage). Leipzig, Germany: Fachbuchverlag Leipzig.
Walker, A. P., Beckerman, A. P., Gu, L., Kattge, J., Cernusak, L. A., Domingues, T. F., … Woodward, F. I. (2014). The relationship of leaf photosynthetic traits – Vcmax and Jmax – To leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study. Ecology and Evolution, 4(16), 3218–3235. https://doi.org/10.1002/ece3.1173
Wang, H., Harrison, S. P., Prentice, I. C., Yang, Y., Bai, F., Togashi, H. F., … Ni, J. (2018). The China plant trait database: Toward a comprehensive regional compilation of functional traits for land plants. Ecology, 99(2), 500–500. https://doi.org/10.1002/ecy.2091
Watanabe, T., Broadley, M. R., Jansen, S., White, P. J., Takada, J., Satake, K., … Osaki, M. (2007). Evolutionary control of leaf element composition in plants. New Phytologist, 174(3), 516–523. https://doi.org/10.1111/j.1469-8137.2007.02078.x
Weedon, J. T., Cornwell, W. K., Cornelissen, J. H. C., Zanne, A. E., Wirth, C., & Coomes, D. A. (2009). Global meta-analysis of wood decomposition rates: A role for trait variation among tree species?Ecology Letters, 12(1), 45–56. https://doi.org/10.1111/j.1461-0248.2008.01259.x
Wellstein, C., Chelli, S., Campetella, G., Bartha, S., Galiè, M., Spada, F., & Canullo, R. (2013). Intraspecific phenotypic variability of plant functional traits in contrasting mountain grasslands habitats. Biodiversity and Conservation, 22(10), 2353–2374. https://doi.org/10.1007/s10531-013-0484-6
Werner, G. D. A., Cornelissen, J. H. C., Cornwell, W. K., Soudzilovskaia, N. A., Kattge, J., West, S. A., & Kiers, E. T. (2018). Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Retrieved from http://dx.doi.org/10.1101/242834
Werner, G. D. A., Cornwell, W. K., Sprent, J. I., Kattge, J., & Kiers, E. T. (2014). A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nature Communications, 5(1), 4087. https://doi.org/10.1038/ncomms5087
White, M. A., Thornton, P. E., Running, S. W., & Nemani, R. R. (2000). Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: Net primary production controls. Earth Interactions, 4(3), 1–85. https://doi.org/10.1175/1087-3562(2000)004<0003:pasaot>2.0.co;2
White, P. J., Broadley, M. R., Thompson, J. A., McNicol, J. W., Crawley, M. J., Poulton, P. R., & Johnston, A. E. (2012). Testing the distinctness of shoot ionomes of angiosperm families using the Rothamsted Park Grass Continuous Hay Experiment. New Phytologist, 196(1), 101–109. https://doi.org/10.1111/j.1469-8137.2012.04228.x
Williams, G. M., & Nelson, A. S. (2018). Spatial variation in specific leaf area and horizontal distribution of leaf area in juvenile western larch (Larix occidentalis Nutt.). Trees, 32(6), 1621–1631. https://doi.org/10.1007/s00468-018-1738-4
Williams, M., Shimabokuro, Y. E., & Rastetter, E. B. (2012). LBA-ECO CD-09 Soil and Vegetation Characteristics, Tapajos National Forest, Brazil. Retrieved from http://dx.doi.org/10.3334/ORNLDAAC/1104
Willis, C. G., Halina, M., Lehman, C., Reich, P. B., Keen, A., McCarthy, S., & Cavender-Bares, J. (2010). Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography, 33, 565–577. https://doi.org/10.1111/j.1600-0587.2009.05975.x
Wilson, K. B., Baldocchi, D. D., & Hanson, P. J. (2000). Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiology, 20(9), 565–578. https://doi.org/10.1093/treephys/20.9.565
Winkler, D. E., Amagai, Y., Huxman, T. E., Kaneko, M., & Kudo, G. (2016). Seasonal dry-down rates and high stress tolerance promote bamboo invasion above and below treeline. Plant Ecology, 217(10), 1219–1234. https://doi.org/10.1007/s11258-016-0649-y
Winkler, D. E., Gremer, J. R., Chapin, K. J., Kao, M., & Huxman, T. E. (2018). Rapid alignment of functional trait variation with locality across the invaded range of Sahara mustard (Brassica tournefortii). American Journal of Botany, 105(7), 1188–1197. https://doi.org/10.1002/ajb2.1126
Winkler, D. E., Lin, M. Y., Delgadillo, J., Chapin, K. J., & Huxman, T. E. (2019). Early life history responses and phenotypic shifts in a rare endemic plant responding to climate change. Conservation Physiology, 7. https://doi.org/10.1093/conphys/coz076
Wirth, C., & Lichstein, J. W. (2009). The imprint of succession on old-growth forest carbon balances insights from a trait-based model of forest dynamics. In C. Wirth, G. Gleixner, & M. Heimann (Eds.), Old-growth forests: Function, fate and value. Ecological Studies (Vol. 207). New York, NY; Berlin; Heidelberg: Springer.
Wright, I. J., Ackerly, D. D., Bongers, F., Harms, K. E., Ibarra-Manriquez, G., Martinez-Ramos, M., … Wright, S. J. (2006). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 99(5), 1003–1015. https://doi.org/10.1093/aob/mcl066
Wright, I. J., Cooke, J., Cernusak, L. A., Hutley, L. B., Scalon, M. C., Tozer, W. C., & Lehmann, C. E. R. (2018). Stem diameter growth rates in a fire-prone savanna correlate with photosynthetic rate and branch-scale biomass allocation, but not specific leaf area. Austral Ecology, 44(2), 339–350. https://doi.org/10.1111/aec.12678
Wright, J. P., & Sutton-Grier, A. (2012). Does the leaf economic spectrum hold within local species pools across varying environmental conditions?Functional Ecology, 26(6), 1390–1398. https://doi.org/10.1111/1365-2435.12001
Wright, S. J., Kitajima, K., Kraft, N., Reich, P., Wright, I., Bunker, D., … Zanne, A. (2010). Functional traits and the growth-mortality tradeoff in tropical trees. Ecology, 100514035422098. https://doi.org/10.1890/09-2335
Yguel, B., Bailey, R., Tosh, N. D., Vialatte, A., Vasseur, C., Vitrac, X., … Prinzing, A. (2011). Phytophagy on phylogenetically isolated trees: Why hosts should escape their relatives. Ecology Letters, 14(11), 1117–1124. https://doi.org/10.1111/j.1461-0248.2011.01680.x
Yu, Q., Elser, J. J., He, N., Wu, H., Chen, Q., Zhang, G., & Han, X. (2011). Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166(1), 1–10. https://doi.org/10.1007/s00442-010-1902-z
Zanne, A. E., Westoby, M., Falster, D. S., Ackerly, D. D., Loarie, S. R., Arnold, S. E. J., & Coomes, D. A. (2010). Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany, 97(2), 207–215. https://doi.org/10.3732/ajb.0900178
Zapata-Cuartas, M., Sierra, C. A., & Alleman, L. (2012). Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass. Forest Ecology and Management, 277, 173–179. https://doi.org/10.1016/j.foreco.2012.04.030
Zheng, J., & Martínez-Cabrera, H. I. (2013). Wood anatomical correlates with theoretical conductivity and wood density across China: Evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany, 112(5), 927–935. https://doi.org/10.1093/aob/mct153
Zheng, W. (1983). Silva Sinica: Volume 1–4. Beijing: China Forestry Publishing House.
Ziemińska, K., Butler, D. W., Gleason, S. M., Wright, I. J., & Westoby, M. (2013). Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB PLANTS, 5. https://doi.org/10.1093/aobpla/plt046
Ziemińska, K., Westoby, M., & Wright, I. J. (2015). Broad anatomical variation within a narrow wood density range—A study of twig wood across 69 Australian angiosperms. PLoS ONE, 10, e0124892. https://doi.org/10.1371/journal.pone.0124892
Zirbel, C. R., Bassett, T., Grman, E., & Brudvig, L. A. (2017). Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. Journal of Applied Ecology, 54(4), 1070–1079. https://doi.org/10.1111/1365-2664.12885
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.