Abstract :
[en] The purpose of this article is to present a general framework for constitutive viscoelastic models in finite strain regime. The approach is qualified as variational since the constitutive updates obey a minimum principle within each load increment. The set of internal variables is strain-based and employs, according to the specific model chosen, a multiplicative decomposition of strain into elastic and viscous components. The present approach shares the same technical procedures used for analogous models of plasticity or viscoplasticity, such as the Solution of a minimization problem to identify inelastic updates and the use of exponential mapping for time integration. However. instead of using the classical decomposition of inelastic strains into amplitude and direction, we take advantage of a spectral decomposition that provides additional facilities to accommodate, into simple analytical expressions, a wide set of specific models. Moreover, appropriate choices of the constitutive potentials allow the reproduction of other formulations in the literature. The final part of the paper presents a set of numerical examples in order to explore the characteristics of the formulation as well as its applicability to usual large-scale FEM analyses. Copyright (c) 2005 John Wiley
Scopus citations®
without self-citations
49