[en] In the present study, morphological traits, organic acids, sugars, total phenols, total flavonoids, total anthocyanins, total anthocyanidins, antioxidant activity and color parameters such as
lightness (L*), Chroma (c*) and hue angle (h°) were investigated in 11 local and introduced fig cultivars cultivated in Moroccan climate. Since only limited information on that topic is available
in the literature, this study was performed in order to compare local clones with some of introduced varieties based on their morphological and biochemical attributes. Results showed highly significant differences among genotypes. The cultivar ‘Kadota’ had the most promising morphological traits. Reducing sugars levels were slightly similar among all cultivars. Thus, glucose varied from 5.55 ± 0.27 to 29.94 ± 0.81 g.kg−1 dw, while fructose amounts were
in the range of 6.23 ± 0.28–28.15 ± 0.78 g.kg−1 dw. ‘Palmera’ exhibited the highest level of Malic acid (4.99 ± 0.2 g.kg−1). The latter was predominant in all cultivars. Total phenols, flavonoids
and total anthocyanins were, generally, abundant in dark-colored cultivars, while total proanthocyanidins were dominant in lightcolored ones. The local cultivars ‘Fassi’ and ‘Noukali’ contained the highest amounts of total phenols and total anthocyanins, respectively (524.74 ± 35.9 mg GAE 100 g−1 dw and 23.77 ± 6.41 cyanidin3-rutinoside/100 g dw). Free radicalscavenging activity (DPPH and ABTS) was, generally, higher in light-colored figs, while, ferric
reducing ability (FRAP) was generally higher in dark skin-colored cultivars. The study confirmed the effectiveness of combining morphological and biochemical analyses in fig assessment and
its use pre-breeding programs of the species in Morocco.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aljane, F., and A., Ferchichi. 2009. Assessment of genetic diversity among some southern Tunisian fig (Ficus carica L.) cultivars based on morphological descriptors. Jrd J. Agric. Sci. 5 (1): 1–16.
Barreira, J.C., I.C., Ferreira, M.B.P., Oliveira, and J.A., Pereira. 2008. Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 107 (3): 1106–1113. doi: 10.1016/j.foodchem.2007.09.030.
Brand-Williams, W., M.E., Cuvelier, and C.L., Berset. 1995. Use of afree radical method to evaluate antioxidant activity. Food Sci. Technol. (NY). 28 (1): 25–30.
Çalişkan, O., and A.A., Polat. 2012. Morphological diversity among fig (Ficus carica L.) accessions sampled from the Eastern Mediterranean Region of Turkey. Turk. J.Agric. For. 36 (2): 179–193.
Cheng, G.W., and P.J., Breen. 1991. Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J.Am. Soc. Hortic. Sci. 116 (5): 865–869. doi: 10.21273/JASHS.116.5.865.
Colaric, M., R., Veberic, F., Stampar, and M., Hudina. 2005. Evaluation of peach and nectarine fruit quality and correlations between sensory and chemical attributes. J.Sci. Food Agric. 85 (15): 2611–2616. doi: 10.1002/(ISSN)1097-0010.
Crisosto, C.H., V., Bremer, and E., Stover. 2011. Fig (Ficus carica L.), p. 134–158. In: E. E. Yahia, (ed.). Postharvest Biology, and Technology of Tropical and Subtropical Fruits. Vol. 3, Cocona to Mango, Woodhead Publishing, Cambridge, UK
Djordjević, B., V., Rakonjac, M.F., Akšić, K., Šavikin, and T., Vulić. 2014. Pomological and biochemical characterization of European currant berry (Ribes sp.) cultivars. Sci. Hortic. 165: 156–162. doi: 10.1016/j.scienta.2013.11.014.
Duman, E., M., Şimşek, and M.M., Özcan. 2018. Monitoring of composition and antimicrobial activity of fig (Ficus carica L.) fruit and seed oil. J.Agric. Processes Techol. 24 (2): 75–80.
Eberhardt, M.V., C.Y., Lee, and R.H., Liu. 2000. Antioxidant activity of fresh apples. Nature 405: 903–904.
Ercisli, S., M., Tosun, H., Karlidag, A., Dzubur, S., Hadziabulic, and Y., Aliman. 2012. Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from Northeastern Turkey. Plant Foods Hum. Nutr. 67 (3): 271–276. doi: 10.1007/s11130-012-0292-2.
FAO. 2017. Food and Agriculture Organization. Retrieved from http://faostat3.fao.org/browse/Q/QC/E.
Feskanich, D., R. G., Ziegler, D. S., Michaud, E. L., Giovannucci, F. E., Speizer, W. C., Willett, and G. A., Colditz. 2000. Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. J. Natl. Cancer Inst. 92: 1812–1823.
Flaishman, M.A., V., Rodov, and E., Stover. 2008. The fig: Botany, horticulture, and breeding. Horticultural Reviews-Westport Then NewYork. Hortic. Rev 34: 113.
Gordon, M. H., 1996. Dietary antioxidants in disease prevention. Nat. Prod. Rep. 13 (4): 265–273.
Gu, L., M.A., Kelm, J.F., Hammerstone, G., Beecher, J., Holden, D., Haytowitz, D., Haytowitz, S., Gebhard, and R.L., Prior. 2004. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J.Nutr. 134 (3): 613–617. doi: 10.1093/jn/134.3.613.
Haegele, A.D., C., Gillette, C., O’Neill, P., Wolfe, J., Heimendinger, S., Sedlacek, and H.J., Thompson. 2000. Plasma xanthophyll carotenoids correlate inversely with indices of oxidative DNA damage and lipid peroxidation. Cancer Epidemiol. Prev. Biomarkers. 9 (4): 421–425.
Häkkinen, S., M., Heinonen, S., Kärenlampi, H., Mykkänen, J., Ruuskanen, and R., Törrönen. 1999. Screening of selected flavonoids and phenolic acids in 19 berries. Food Res. Int. 32 (5): 345–353. doi: 10.1016/S0963-9969(99)00095-2.
Halliwell, B., 1996. Antioxidants in human health and disease. Annu. Rev. Nutr. 16 (1): 33–50. doi: 10.1146/annurev.nu.16.070196.000341.
Harzallah, A., A.M., Bhouri, Z., Amri, H., Soltana, and H., Hammami. 2016. Phytochemical content and antioxidant activity of different fruit parts juices of three figs (Ficus carica L.) varieties grown in Tunisia. Indian Crops Prd. 83: 255–267. doi: 10.1016/j.indcrop.2015.12.043.
Hernández, F., L., Noguera‐Artiaga, F., Burló, A., Wojdyło, A.A., Carbonell‐Barrachina, and P., Legua. 2016. Physico‐chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (Ziziphus jujuba Mill.) fruits. J.Sci. Food Agric. 96 (8): 2682–2691. doi: 10.1002/jsfa.7386.
Hirst, K., 1996. Fig trees and archaeology. The history of the domestication of fig trees. About.com Archaeology. http://archaeology.about.com/od/domestications/a/fig_ trees.htm
Hssaini, L., H., Hanine, R., Razouk, S., Ennahli, A., Mekaoui, and J., Charafi. 2019. Characterization of local fig clones (Ficus carica L.) collected in Northern Morocco. Fruits 74 (2): 55–64. doi: 10.17660/th2019/74.2.1.
International Plant Genetic Resources Institute (IPGRI). 2003. Descriptors for fig (Ficus carica L.). IPGRI, Rome.
Kafkas, E., M., Koşar, S., Paydaş, S., Kafkas, and K.H.C., Başer. 2007. Quality characteristics of strawberry genotypes at different maturation stages. Food Chem. 100 (3): 1229–1236. doi: 10.1016/j.foodchem.2005.12.005.
Kamiloglu, S., and E., Capanoglu. 2013. Investigating the invitro bioaccessibility of polyphenols in fresh and sun‐dried figs (F icus carica L.). Int. J.Food Sci. Nutr. 48 (12): 2621–2629.
Khadivi, A., R., Anjam, and K., Anjam. 2018. Morphological and pomological characterization of edible fig (Ficus carica L.) to select the superior trees. Sci. Hortic. 238: 66–74. doi: 10.1016/j.scienta.2018.04.031.
Khadivi-Khub, A., Z., Zamani, and M.R., Fatahi. 2012. Multivariate analysis of Prunus subgen. Cerasus germplasm in Iran using morphological variables. Genet. Resour. Crop Evol. 59 (5): 909–926. doi: 10.1007/s10722-011-9733-2.
Kuś, P.M., F., Congiu, D., Teper, Z., Sroka, I., Jerković, and C.I.G., Tuberoso. 2014. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. Food Sci. Technol. 55 (1): 124–130.
Melgarejo, P., F., Hernandez, J.J., Martinez, J., Sánchez, and D.M., Salazar. 2003. Organic acids and sugars from first andsecond crop fig juices. Acta Hortic. 605: 237–239.
Michailides, T.J., and D.P.P., Morgan. 1998. Spread of endosepsis in Calimyrna fig orchards. Phytopathology. 88 (7): 637–647. doi: 10.1094/PHYTO.1998.88.7.637.
Michels, K. B., E., Giovannucci, K. J., Joshipura, B. A., Rosner, M. J., Stampfer, C. S., Fuchs, G. A., Colditz, F. E., Speizer, and W. C., Willett. 2000. Prospective study of fruit and vegetable con- sumption and incidence of colon and rectal cancers. J. Natl. Cancer Inst. 92: 1740–1752.
Pande, G., and C.C., Akoh. 2010. Organic acids, antioxidant capacity, phenolic content and lipid characterisation of Georgia-grown underutilized fruit crops. Food Chem. 120 (4): 1067–1075. doi: 10.1016/j.foodchem.2009.11.054.
Pereira, C., M., López Corrales, A., Martín, M.D.C., Villalobos, M.D.G., Córdoba, and M.J., Serradilla. 2017. Physicochemical and nutritional characterization of brebas for fresh consumption from nine fig varieties (Ficus carica L.) grown in Extremadura (Spain). J.Food Qual. doi: 10.1155/2017/6302109.
Pérez-Sánchez, R., M.R., Morales-Corts, and M.A., Gómez-Sánchez. 2016. Agromorphological diversity of traditional fig cultivars grown in centralwestern Spain. Genetika. 48 (2): 533–546. doi: 10.2298/GENSR1602533P.
Podgornik, M., I., Vuk, I., Vrhovnik, and D., Mavsar. 2010. Asurvey and morphological evaluation of fig (Ficus carica L.) genetic resources from Slovenia. Sci. Hortic. 125 (3): 380–389. doi: 10.1016/j.scienta.2010.04.030.
Porter, L.J., L.N., Hrstich, and B.G., Chan. 1985. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25 (1): 223–230. doi: 10.1016/S0031-9422(00)94533-3.
Pourghayoumi, M., D., Bakhshi, M., Rahemi, A., Noroozisharaf, M., Jafari, M., Salehi, R., Chamane, and F., Hernandez. 2017. Phytochemical attributes of some dried fig (Ficus carica L.) fruit cultivars grown in Iran. Agric. Conspec. Sci 81 (3): 161–166.
Re, R., N., Pellegrini, A., Proteggente, A., Pannala, M., Yang, and C., Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26 (9–10): 1231–1237. doi: 10.1016/S0891-5849(98)00315-3.
Rodov, V., Y., Vinokur, and B., Horev. 2012. Brief postharvest exposure to pulsed light stimulates coloration and anthocyanin accumulation in fig fruit (Ficus Carica L.). Postharvest Biol. Technol. 68: 43–46.
Sagar, V.R., and P.S., Kumar. 2010. Recent advances in drying and dehydration of fruits and vegetables: A review. J.Food Sci. Technol. 47 (1): 15–26. doi: 10.1007/s13197-010-0010-8.
Sedaghat, S., and M., Rahemi. 2018. Effects of physio-chemical changes during fruit development on nutritional quality of fig (Ficus carica L.var.‘Sabz’) under rain-fed condition. Sci. Hortic. 237: 44–50. doi: 10.1016/j.scienta.2018.04.003.
Serradilla, M.J., M., Lozano, M.J., Bernalte, M.C., Ayuso, M., López-Corrales, and D., González-Gómez. 2011. Physicochemical and bioactive properties evolution during ripening of ‘Ambrunés’ sweet cherry cultivar. J.Food Sci. Technol. 44 (1): 199–205.
Singleton, V. L., R., Orthofer, and R. M., Lamuela-Raventos. 1999. analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299: 152–178.
Slatnar, A., U., Klancar, F., Stampar, and R., Veberic. 2011. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds. J.Agric. Food Chem. 59 (21): 11696–11702. doi: 10.1021/jf202707y.
Solomon, A., S., Golubowicz, Z., Yablowicz, S., Grossman, M., Bergman, H.E., Gottlieb, A., Altman, Z., Kerem, and M.A., Flaishman. 2006. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J.Agric. Food Chem. 54 (20): 7717–7723. doi: 10.1021/jf060497h.
Tamboli, B.D., D.D., Sawale, P.B., Jagtap, R.U., Nimbalkar, and S.R., Teke. 2015. Effect of micronutrients on yield and fruit quality of fig on Inceptisol. Indian J.Hort. 72 (3): 419–422. doi: 10.5958/0974-0112.2015.00082.1.
Tomás-Barberán, FA, D, Ruiz, and D, Valero, Rivera D, Obón C, Sánchez-Roca C, Gil MI. 2013. Health Benefits from Pomegranates and Stone Fruit, Including Plums, Peaches, Apricots and Cherries, p. 125–167. In: M. Skinner, D. Hunter (eds.). Bioactives in Fruit: Health Benefits and Functional Foods. John Wiley & Sons, Ltd, Oxford, UK
Veberic, R., M., Colaric, and F., Stampar. 2008. Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chem. 106 (1): 153–157. doi: 10.1016/j.foodchem.2007.05.061.
Veberic, R., and M., Mikulic-Petkovsek. 2016. Phytochemical composition of common fig (Ficus carica L.) cultivars, p. 235–255. In: M.S.J. Simmonds, V.R. Preedy, (eds.). Nutritional composition of fruit cultivars. 1st ed. American Press, London, UK.
Vemmos, S.N., E., Petri, and V., Stournaras. 2013. Seasonal changes in photosynthetic activity and carbohydrate content in leaves and fruit of three fig cultivars (Ficus carica L.). Sci. Hortic. 160: 198–207. doi: 10.1016/j.scienta.2013.05.036.
Vinson, J.A., Y., Hao, X., Su, and L., Zubik. 1998. Phenol antioxidant quantity and quality in foods: Vegetables. J.Agric. Food Chem. 46 (9): 3630–3634. doi: 10.1021/jf980295o.
Viuda-Martos, M., X., Barber, J.A., Perez-Alvarez, and J., Fernandez-Lopez. 2015. Assessment of chemical, physico-chemical, techno-functional and antioxidant properties of fig (Ficus carica L.) powder co-products. Ind. Crop. Prod. 69: 472–479. doi: 10.1016/j.indcrop.2015.03.005.
Wojdyło, A., P., Nowicka, A.A., Carbonell-Barrachina, and F., Hernández. 2016. Phenolic compounds, antioxidant and antidiabetic activity of different cultivars of Ficus carica L. fruits. J.Func. Foods. 25: 421–432. doi: 10.1016/j.jff.2016.06.015.
Yahia, E.M., 2011. Postharvest biology and technology of tropical and subtropical fruits, p. 260–266. Cocoa to mango. Vol. 3. Woolhead Publishing Limited, Cambridge CB22 3HJ, UK.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.