Sharma, U., Pal, D., Prasad, R., Alkaline phosphatase: An overview. Indian J. Clin. Biochem. 29 (2014), 269–278, 10.1007/s12291-013-0408-y.
Millán, J.L., Mammalian Alkaline Phosphatases: From Biology to Applications in Medicine and Biotechnology. 2006, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG doi:10.1002/3527608060.
Magnusson, P., Degerblad, M., Sääf, M., Larsson, L., Thorén, M., Different responses of bone alkaline phosphatase isoforms during recombinant insulin-like growth factor-I (IGF-I) and during growth hormone therapy in adults with growth hormone deficiency. J. Bone Miner. Res. 12 (1997), 210–220, 10.1359/jbmr.1997.12.2.210.
Golub, E.E., Boesze-Battaglia, K., The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop. 18 (2007), 444–448, 10.1097/BCO.0b013e3282630851.
Haarhaus, M., Brandenburg, V., Kalantar-Zadeh, K., Stenvinkel, P., Magnusson, P., Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD. Nat. Rev. Nephrol. 13 (2017), 429–442, 10.1038/nrneph.2017.60.
Glendenning, P., Chubb, S.A.P., Vasikaran, S., Clinical utility of bone turnover markers in the management of common metabolic bone diseases in adults. Clin. Chim. Acta 481 (2018), 161–170, 10.1016/j.cca.2018.03.009.
Drechsler, C., Verduijn, M., Pilz, S., Krediet, R.T., Dekker, F.W., Wanner, C., Ketteler, M., Boeschoten, E.W., Brandenburg, V., Bone alkaline phosphatase and mortality in dialysis patients. Clin. J. Am. Soc. Nephrol. 6 (2011), 1752–1759, 10.2215/CJN.10091110.
Magnusson, P., Löfman, O., Larsson, L., Determination of alkaline phosphatase isoenzymes in serum by high-performance liquid chromatography with post-column reaction detection. J. Chromatogr. 576 (1992), 79–86, 10.1016/0378-4347(92)80177-R.
Haarhaus, M., Fernström, A., Magnusson, M., Magnusson, P., Clinical significance of bone alkaline phosphatase isoforms, including the novel B1x isoform, in mild to moderate chronic kidney disease. Nephrol. Dial. Transplant. 24 (2009), 3382–3389, 10.1093/ndt/gfp300.
Magnusson, P., Farley, J.R., Differences in sialic acid residues among bone alkaline phosphatase isoforms: A physical, biochemical, and immunological characterization. Calcif. Tissue Int. 71 (2002), 508–518, 10.1007/s00223-001-1137-4.
Wyckoff, H.W., Handschumacher, M., Murthy, H.M., Sowadski, J.M., The three dimensional structure of alkaline phosphatase from E. coli. Adv. Enzymol. Relat. Areas Mol. Biol. 55 (1983), 453–480.
Le Du, M.H., Stigbrand, T., Taussig, M.J., Ménez, A., Stura, E.A., Crystal structure of alkaline phosphatase from human placenta at 1.8 Å resolution. J. Biol. Chem. 276 (2001), 9158–9165, 10.1074/jbc.M009250200.
Anh, D.J., Dimai, H.P., Hall, S.L., Farley, J.R., Skeletal alkaline phosphatase activity is primarily released from human osteoblasts in an insoluble form, and the net release is inhibited by calcium and skeletal growth factors. Calcif. Tissue Int. 62 (1998), 332–340, 10.1007/s002239900441.
Anh, D.J., Eden, A., Farley, J.R., Quantitation of soluble and skeletal alkaline phosphatase, and insoluble alkaline phosphatase anchor-hydrolase activities in human serum. Clin. Chim. Acta 311 (2001), 137–148, 10.1016/S0009-8981(01)00584-8.
Magnusson, P., Sharp, C.A., Farley, J.R., Different distributions of human bone alkaline phosphatase isoforms in serum and bone tissue extracts. Clin. Chim. Acta 325 (2002), 59–70, 10.1016/S0009-8981(02)00248-6.
Mornet, E., Stura, E., Lia-Baldini, A.-S., Stigbrand, T., Ménez, A., Le Du, M.-H., Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization. J. Biol. Chem. 276 (2001), 31171–31178, 10.1074/jbc.M102788200.
Hoylaerts, M.F., Manes, T., Millán, J.L., Mammalian alkaline phosphatases are allosteric enzymes. J. Biol. Chem. 272 (1997), 22781–22787, 10.1074/jbc.272.36.22781.
Halling Linder, C., Narisawa, S., Millán, J.L., Magnusson, P., Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms. Bone 45 (2009), 987–993, 10.1016/j.bone.2009.07.009.
Nosjean, O., Koyama, I., Goseki, M., Roux, B., Komoda, T., Human tissue non-specific alkaline phosphatases: sugar-moiety-induced enzymic and antigenic modulations and genetic aspects. Biochem. J. 321 (1997), 297–303, 10.1042/bj3210297.
Sharp, C.A., Linder, C., Magnusson, P., Analysis of human bone alkaline phosphatase isoforms: Comparison of isoelectric focusing and ion-exchange high-performance liquid chromatography. Clin. Chim. Acta 379 (2007), 105–112, 10.1016/j.cca.2006.12.024.
Whyte, M.P., Landt, M., Ryan, L.M., Mulivor, R.A., Henthorn, P.S., Fedde, K.N., Mahuren, J.D., Coburn, S.P., Alkaline phosphatase: Placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5’-phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J. Clin. Invest. 95:4 (1995), 1440–1445, 10.1172/JCI117814.
Dillon, S., Staines, K.A., Millán, J.L., Farquharson, C., How to build a bone: PHOSPHO1, biomineralization and beyond. JBMR Plus. 3 (2019), 1–12, 10.1002/jbm4.10202.
Posen, S., Heat inactivation in the study of human alkaline phosphatases. Ann. Intern. Med., 62, 1965, 1234, 10.7326/0003-4819-62-6-1234.
Harris, H., The human alkaline phosphatases: What we know and what we don't know. Clin. Chim. Acta. 186 (1990), 133–150, 10.1016/0009-8981(90)90031-M.
Meyer-Sabellek, W., Sinha, P., Köttgen, E., Alkaline phosphatase: Laboratory and clinical implications. J. Chromatogr. B 429 (1988), 419–444, 10.1016/S0378-4347(00)83881-5.
Fishman, W.H., Perspectives on alkaline phosphatase isoenzymes. Am. J. Med. 56 (1974), 617–650, 10.1016/0002-9343(74)90631-7.
Whitby, L.G., Moss, D.W., Analysis of heat inactivation curves of alkaline phosphatase isoenzymes in serum. Clin. Chim. Acta 59 (1975), 361–367, 10.1016/0009-8981(75)90012-1.
Price, C.P., Multiple forms of human serum alkaline phosphatase: Detection and quantitation. Ann. Clin. Biochem. 30 (1993), 355–372, 10.1177/000456329303000403.
Shephard, M.D., Peake, M.J., Quantitative method for determining serum alkaline phosphatase isoenzyme activity I. Guanidine hydrochloride: New reagent for selectively inhibiting major serum isoenzymes of alkaline phosphatase. J. Clin. Pathol. 39:9 (1986), 1025–1030, 10.1136/jcp.39.9.1025.
Rosalki, S.B., Foo, A.Y., Two new methods for separating and quantifying bone and liver alkaline phosphatase isoenzymes in plasma. Clin. Chem. 30 (1984), 1182–1186.
Van Hoof, V.O., Lepoutre, L.G., Hoylaerts, M.F., Chevigne, R., De Broe, M.E., Improved agarose electrophoretic method for separating alkaline phosphatase isoenzymes in serum. Clin. Chem. 34 (1988), 1857–1862.
Anderson, D.J., Branum, E.L., O'Brien, J.F., Liver- and bone-derived isoenzymes of alkaline phosphatase in serum as determined by high-performance affinity chromatography. Clin. Chem. 36 (1990), 240–246.
Magnusson, P., Lofman, O., Larsson, L., Methodological aspects on separation and reaction conditions of bone and liver alkaline phosphatase isoform analysis by high-performance liquid chromatography. Anal. Biochem. 211 (1993), 156–163, 10.1006/abio.1993.1247.
Magnusson, P., Löfman, O., Toss, G., Larsson, L., Determination of bone alkaline phosphatase isoforms in serum by a new high-performance liquid chromatography assay in patients with metabolic bone disease. Acta Orthop. 66 (1995), 203–204, 10.3109/17453679509157692.
Halling Linder, C., Enander, K., Magnusson, P., Glycation contributes to interaction between human bone alkaline phosphatase and collagen Type I. Calcif. Tissue Int. 98, 2016, 284–293, 10.1007/s00223-015-0088-0.
Magnusson, P., Davie, M.W.J., Sharp, C.A., Circulating and tissue-derived isoforms of bone alkaline phosphatase in Paget's disease of bone. Scand. J. Clin. Lab. Invest. 70 (2010), 128–135, 10.3109/00365511003642527.
Bover, J., Ureña, P., Aguilar, A., Mazzaferro, S., Benito, S., López-Báez, V., Ramos, A., daSilva, I., Cozzolino, M., Alkaline phosphatases in the complex chronic kidney disease-mineral and bone disorders. Calcif. Tissue Int. 103 (2018), 111–124, 10.1007/s00223-018-0399-z.
Halling Linder, C., Englund, U.H., Narisawa, S., Millán, J.L., Magnusson, P., Isozyme profile and tissue-origin of alkaline phosphatases in mouse serum. Bone 53:2 (2013), 399–408, 10.1016/j.bone.2012.12.048.
Swolin-Eide, D., Hansson, S., Larsson, L., Magnusson, P., The novel bone alkaline phosphatase B1x isoform in children with kidney disease. Pediatr. Nephrol. 21 (2006), 1723–1729, 10.1007/s00467-006-0231-2.
Schumann, G., Klauke, R., Canalias, F., Bossert-Reuther, S., Franck, P.F.H., Gella, F.J., Jørgensen, P.J., Kang, D., Lessinger, J.M., Panteghini, M., Ceriotti, F., IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C. Part 9: Reference procedure for the measurement of catalytic concentration of alkaline phosphatase International Federation of Clinical Chemistr. Clin. Chem. Lab. Med. 49 (2011), 1439–1446, 10.1515/CCLM.2011.621.
Masrour Roudsari, J., Mahjoub, S., Quantification and comparison of bone-specific alkaline phosphatase with two methods in normal and paget's specimens. Caspian J. Intern. Med. 3 (2012), 478–483.
Braga, F., Frusciante, E., Infusino, I., Aloisio, E., Guerra, E., Ceriotti, F., Panteghini, M., Evaluation of the trueness of serum alkaline phosphatase measurement in a group of Italian laboratories. Clin. Chem. Lab. Med. 55 (2017), e47–e50, 10.1515/cclm-2016-0605.
Noble, J.E., Quantification of protein concentration using UV absorbance and coomassie dyes. Methods Enzymol, first ed., 2014, Elsevier Inc., 17–26, 10.1016/B978-0-12-420070-8.00002-7.
Rami, L., Roura, M., Canalias, F., Evaluation of commutability of several materials for harmonization alkaline phosphatase catalytic concentration measurements. Clin. Chim. Acta 413 (2012), 1249–1254, 10.1016/j.cca.2012.04.004.
Bretaudière, J.P., Vassault, A., Amsellem, L., Pourci, M.L., Thieu-Phung, H., Bailly, M., Criteria for establishing a standardized method for determining alkaline phosphatase activity in human serum. Clin. Chem. 23 (1977), 2263–2274 http://clinchem.aaccjnls.org/content/clinchem/23/12/2263.full.pdf.
Keiding, R., Hörder, M., Denmark, W.G., Pitkänen, E., Tenhunen, R., Strömme, J.H., Theodorsen, L., Waldenström, J., Tryding, N., Westlund, L., Recommended methods for the determination of four enzymes in blood. Scand. J. Clin. Lab. Invest. 33 (1974), 291–306, 10.1080/00365517409082499.
Ureña, P., Hruby, M., Ferreira, A., Ang, K.S., de Vernejoul, M.C., Plasma total versus bone alkaline phosphatase as markers of bone turnover in hemodialysis patients. J. Am. Soc. Nephrol. 7 (1996), 506–512 http://www.ncbi.nlm.nih.gov/pubmed/8704118.
Romagnoli, E., Minisola, G., Carnevale, V., Scillitani, A., Frusciante, V., Aliberti, G., Minisola, S., Assessment of serum total and bone alkaline phosphatase measurement in clinical practice. Clin. Chem. Lab. Med. 36 (1998), 163–168, 10.1515/CCLM.1998.030.
Broyles, D.L., Nielsen, R.G., Bussett, E.M., Lu, W.D., Mizrahi, I.A., Nunnelly, P.A., Ngo, T.A., Noell, J., Christenson, R.H., Kress, B.C., Analytical and clinical performance characteristics of Tandem-MP Ostase, a new immunoassay for serum bone alkaline phosphatase. Clin. Chem. 44 (1998), 2139–2147.
Cavalier, E., Souberbielle, J.C., Gadisseur, R., Dubois, B., Krzesinski, J.M., Delanaye, P., Inter-method variability in bone alkaline phosphatase measurement: Clinical impact on the management of dialysis patients. Clin. Biochem. 47 (2014), 1227–1230, 10.1016/j.clinbiochem.2014.04.007.
J.J. Brady, D. McGoldrick, K. O'Callaghan, F. McNamara, K.J. Mulready, M.R. Cullen, S. Denieffe, M. Fitzgibbon, Bone alkaline phosphatase on the IDS-iSYS automated analyser; cross-reactivity with intestinal ALP, Clin. Chem. Lab. Med. (2018) 12–14. doi:10.1515/cclm-2018-0991.
Ahmed, F., Gibbons, S.M., Bone-specific alkaline phosphatase by immunoassay or electrophoresis: Their use in clinical practice. J. Clin. Pathol. 68 (2015), 246–248, 10.1136/jclinpath-2014-202766.
Milligan, T.P., Park, H.R., Noonan, K., Price, C.P., Assessment of the performance of a capture immunoassay for the bone isoform of alkaline phosphatase in serum. Clin. Chim. Acta 263 (1997), 165–175, 10.1016/S0009-8981(97)00052-1.
Magnusson, P., Ärlestig, L., Paus, E., Di Mauro, S., Testa, M.P., Stigbrand, T., Farley, J.R., Nustad, K., Millán, J.L., Monoclonal antibodies against tissue-nonspecific alkaline phosphatase. Report of the ISOBM TD9 workshop. Tumor Biol. 23 (2002), 228–248, 10.1159/000067254.
Van Hoof, V.O., Martin, M., Blockx, P., Prove, A., Van Oosterom, A., Couttenye, M.M., De Broe, M.E., Lepoutre, L.G., Immunoradiometric method and electrophoretic system compared for quantifying bone alkaline phosphatase in serum. Clin. Chem. 41 (1995), 853–857.
Masuhara, K., Yoshikawa, R., Takaoka, K., Ono, K., Morris, D.C., Anderson, H.C., Monoclonal antibody against human bone alkaline phosphatase. Int. Orthop., 61–64, 1991.
Orimo, H., The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J. Nippon Med. Sch. 77 (2010), 4–12, 10.1272/jnms.77.4.
Nakamura, M., Udagawa, N., Matsuura, S., Mogi, M., Nakamura, H., Horiuchi, H., Saito, N., Hiraoka, B.Y., Kobayashi, Y., Takaoka, K., Ozawa, H., Miyazawa, H., Takahashi, N., Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144 (2003), 5441–5449, 10.1210/en.2003-0717.
Robison, R., The possible significance of hexosephosphoric esters in ossification. Biochem. J. 17 (1923), 286–293.
Robison, R., Soames, K.M., The possible significance of hexosephosphoric esters in ossification: Part II. The phosphoric esterase of ossifying cartilage. Biochem. J. 18, 1924, 740–754, 10.1042/bj0180740.
Whyte, M.P., Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr. Rev. 15 (1994), 439–461, 10.1210/edrv-15-4-439.
Ali, S.Y., Sajdera, S.W., Anderson, H.C., Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc. Natl. Acad. Sci. 67 (1970), 1513–1520, 10.1073/pnas.67.3.1513.
Drabek, K., van de Peppel, J., Eijken, M., van Leeuwen, J.P., GPM6B regulates osteoblast function and induction of mineralization by controlling cytoskeleton and matrix vesicle release. J. Bone Miner. Res. 26 (2011), 2045–2051, 10.1002/jbmr.435.
Goettsch, C., Hutcheson, J.D., Aikawa, M., Iwata, H., Pham, T., Nykjaer, A., Kjolby, M., Rogers, M., Michel, T., Shibasaki, M., Hagita, S., Kramann, R., Rader, D.J., Libby, P., Singh, S.A., Aikawa, E., Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J. Clin. Invest. 126 (2016), 1323–1336, 10.1172/JCI80851.
Orimo, H., Shimada, T., The role of tissue-nonspecific alkaline phosphatase in the phosphate-induced activation of alkaline phosphatase and mineralization in SaOS-2 human osteoblast-like cells. Mol. Cell. Biochem. 315 (2008), 51–60, 10.1007/s11010-008-9788-3.
Terkeltaub, R., Physiologic and pathologic functions of the NPP nucleotide pyrophosphatase/phosphodiesterase family focusing on NPP1 in calcification. Purinergic Signal. 2 (2006), 371–377, 10.1007/s11302-005-5304-3.
Millán, J.L., The role of phosphatases in the initiation of skeletal mineralization. Calcif. Tissue Int. 93 (2013), 299–306, 10.1007/s00223-012-9672-8.
Golub, E.E., Harrison, G., Taylor, A.G., Camper, S., Shapiro, I.M., The role of alkaline phosphatase in cartilage mineralization. Bone Miner. 17 (1992), 273–278, 10.1016/0169-6009(92)90750-8.
Halling Linder, C., Ek-Rylander, B., Krumpel, M., Norgård, M., Narisawa, S., Millán, J.L., Andersson, G., Magnusson, P., Bone alkaline phosphatase and tartrate-resistant acid phosphatase: potential co-regulators of bone mineralization. Calcif. Tissue Int. 101 (2017), 92–101, 10.1007/s00223-017-0259-2.
Lomashvili, K.A., Cobbs, S., Hennigar, R.A., Hardcastle, K.I., O'Neill, W.C., Phosphate-induced vascular calcification: Role of pyrophosphate and osteopontin. J. Am. Soc. Nephrol. 15 (2004), 1392–1401, 10.1097/01.ASN.0000128955.83129.9C.
Uhlin, F., Fernström, A., Knapen, M.H.J., Vermeer, C., Magnusson, P., Long-term follow-up of biomarkers of vascular calcification after switch from traditional hemodialysis to online hemodiafiltration. Scand. J. Clin. Lab. Invest. 79 (2019), 174–181, 10.1080/00365513.2019.1576218.
Murali, S.K., Roschger, P., Zeitz, U., Klaushofer, K., Andrukhova, O., Erben, R.G., FGF23 regulates bone mineralization in a 1,25(OH) 2 D 3 and klotho-independent manner. J. Bone Miner. Res. 31 (2016), 129–142, 10.1002/jbmr.2606.
Li, J.-W., Xu, C., Fan, Y., Wang, Y., Xiao, Y.-B., Can serum levels of alkaline phosphatase and phosphate predict cardiovascular diseases and total mortality in individuals with preserved renal function? A systemic review and meta-analysis. e102276 PLoS One, 9, 2014, 10.1371/journal.pone.0102276.
Ndrepepa, G., Xhepa, E., Braun, S., Cassese, S., Fusaro, M., Schunkert, H., Kastrati, A., Alkaline phosphatase and prognosis in patients with coronary artery disease. Eur. J. Clin. Invest. 47 (2017), 378–387, 10.1111/eci.12752.
Manghat, P., Souleimanova, I., Cheung, J., Wierzbicki, A.S., Harrington, D.J., Shearer, M.J., Chowiencki, P., Fogelman, I., Nerlander, M., Goldsmith, D., Hampson, G., Association of bone turnover markers and arterial stiffness in pre-dialysis chronic kidney disease (CKD). Bone 48 (2011), 1127–1132, 10.1016/j.bone.2011.01.016.
Kobayashi, I., Shidara, K., Okuno, S., Yamada, S., Imanishi, Y., Mori, K., Ishimura, E., Shoji, S., Yamakawa, T., Inaba, M., Higher serum bone alkaline phosphatase as a predictor of mortality in male hemodialysis patients. Life Sci. 90 (2012), 212–218, 10.1016/j.lfs.2011.11.006.
Filipowicz, R., Greene, T., Wei, G., Cheung, A.K., Raphael, K.L., Baird, B.C., Beddhu, S., Associations of serum skeletal alkaline phosphatase with elevated C-reactive protein and mortality. Clin. J. Am. Soc. Nephrol. 8 (2013), 26–32, 10.2215/CJN.12031111.
Zelle, D.M., Corpeleijn, E., van Ree, R.M., Stolk, R.P., van der Veer, E., Gans, R.O.B., Homan van der Heide, J.J., Navis, G., Bakker, S.J.L., Markers of the hepatic component of the metabolic syndrome as predictors of mortality in renal transplant recipients. Am. J. Transplant. 10 (2010), 106–114, 10.1111/j.1600-6143.2009.02876.x.
Van Hoof, V.O., De Broe, M.E., Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. Crit. Rev. Clin. Lab. Sci. 31 (1994), 197–293, 10.3109/10408369409084677.
Magnusson, P., Häger, A., Larsson, L., Serum osteocalcin and bone and liver alkaline phosphatase isoforms in healthy children and adolescents. Pediatr. Res. 38 (1995), 955–961, 10.1203/00006450-199512000-00021.
Kim, S.H., Shin, K.-H., Moon, S.-H., Jang, J., Kim, H.S., Suh, J.-S., Yang, W.-I., Reassessment of alkaline phosphatase as serum tumor marker with high specificity in osteosarcoma. Cancer Med. 6 (2017), 1311–1322, 10.1002/cam4.1022.
Glass, E.J., Hume, R., Hendry, G.M., Strange, R.C., Forfar, J.O., Plasma alkaline phosphatase activity in rickets of prematurity. Arch. Dis. Child. 57 (1982), 373–376, 10.1136/adc.57.5.373.
Pfeilschifter, J., Siegrist, E., Wüster, C., Blind, E., Ziegler, R., Serum levels of intact parathyroid hormone and alkaline phosphatase correlate with cortical and trabecular bone loss in primary hyperparathyroidism. Acta Endocrinol. (Copenh) 127 (1992), 319–323, 10.1530/acta.0.1270319.
Terpos, E., Biochemical markers of bone metabolism in multiple myeloma. Cancer Treat. Rev. 32 (2006), 15–19, 10.1016/S0305-7372(06)80004-6.
Tobiume, H., Kanzaki, S., Hida, S., Ono, T., Moriwake, T., Yamauchi, S., Tanaka, H., Seino, Y., Serum bone alkaline phosphatase isoenzyme levels in normal children and children with growth hormone (GH) deficiency: A potential marker for bone formation and response to GH therapy. J. Clin. Endocrinol. Metab. 82 (1997), 2056–2061, 10.1210/jc.82.7.2056.
Magnusson, P., Larsson, L., Magnusson, M., Davie, M.W.J., Sharp, C.A., Isoforms of bone alkaline phosphatase: Characterization and origin in human trabecular and cortical bone. J. Bone Miner. Res. 14 (1999), 1926–1933, 10.1359/jbmr.1999.14.11.1926.
Yan, J., Li, L., Zhang, M., Cai, H., Ni, Z., Circulating bone-specific alkaline phosphatase and abdominal aortic calcification in maintenance hemodialysis patients. Biomark. Med. 12 (2018), 1231–1239, 10.2217/bmm-2018-0089.
Haarhaus, M., Monier-Faugere, M.-C., Magnusson, P., Malluche, H.H., Bone alkaline phosphatase isoforms in hemodialysis patients with low versus non-low bone turnover: a diagnostic test study. Am. J. Kidney Dis. 66 (2015), 99–105, 10.1053/j.ajkd.2015.02.323.
Sardiwal, S., Magnusson, P., Goldsmith, D.J.A., Lamb, E.J., Bone alkaline phosphatase in CKD-mineral bone disorder. Am. J. Kidney Dis. 62 (2013), 810–822, 10.1053/j.ajkd.2013.02.366.
Harber, M., Practical Nephrology. 2014, Springer London, London doi:10.1007/978-1-4471-5547-8.
Evenepoel, P., Rodriguez, M., Ketteler, M., Laboratory abnormalities in CKD-MBD: markers, predictors, or mediators of disease?. Semin. Nephrol. 34 (2014), 151–163, 10.1016/j.semnephrol.2014.02.007.
Regidor, D.L., Kovesdy, C.P., Mehrotra, R., Rambod, M., Jing, J., McAllister, C.J., Van Wyck, D., Kopple, J.D., Kalantar-Zadeh, K., Serum alkaline phosphatase predicts mortality among maintenance hemodialysis patients. J. Am. Soc. Nephrol. 19 (2008), 2193–2203, 10.1681/ASN.2008010014.
Liu, X., Guo, Q., Feng, X., Wang, J., Wu, J., Mao, H., Huang, F., Yu, X., Yang, X., Alkaline phosphatase and mortality in patients on peritoneal dialysis. Clin. J. Am. Soc. Nephrol. 9 (2014), 771–778, 10.2215/CJN.08280813.
Persy, V., D'Haese, P., Vascular calcification and bone disease: the calcification paradox. Trends Mol. Med. 15 (2009), 405–416, 10.1016/j.molmed.2009.07.001.
Briet, M., Laurent, S., Boutouyrie, P., Calcification vasculaire au cours de l'insuffisance rénale chronique: Un phénomène proche de l'ossification endochondrale. Sang Thromb. Vaiss. 15 (2003), 381–386.
Schoppet, M., Shanahan, C.M., Role for alkaline phosphatase as an inducer of vascular calcification in renal failure?. Kidney Int. 73 (2008), 989–991, 10.1038/ki.2008.104.
Moe, S.M., Chen, N.X., Mechanisms of vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 19 (2008), 213–216, 10.1681/ASN.2007080854.
Chen, N.X., O'Neill, K.D., Chen, X., Moe, S.M., Annexin-mediated matrix vesicle calcification in vascular smooth muscle cells. J. Bone Miner. Res. 23 (2008), 1798–1805, 10.1359/jbmr.080604.
Haarhaus, M., Arnqvist, H.J., Magnusson, P., Calcifying human aortic smooth muscle cells express different bone alkaline phosphatase isoforms, including the novel B1x isoform. J. Vasc. Res. 50 (2013), 167–174, 10.1159/000346161.
Sheen, C.R., Kuss, P., Narisawa, S., Yadav, M.C., Nigro, J., Wang, W., Chhea, T.N., Sergienko, E.A., Kapoor, K., Jackson, M.R., Hoylaerts, M.F., Pinkerton, A.B., O'Neill, W.C., Millán, J.L., Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J. Bone Miner. Res. 30 (2015), 824–836, 10.1002/jbmr.2420.
Lomashvili, K.A., Narisawa, S., Millán, J.L., O'Neill, W.C., Vascular calcification is dependent on plasma levels of pyrophosphate. Kidney Int. 85 (2014), 1351–1356, 10.1038/ki.2013.521.
Villa-Bellosta, R., Egido, J., Phosphate, pyrophosphate, and vascular calcification: A question of balance. Eur. Heart J. 38 (2017), 1801–1804, 10.1093/eurheartj/ehv605.
Kramann, R., Goettsch, C., Wongboonsin, J., Iwata, H., Schneider, R.K., Kuppe, C., Kaesler, N., Chang-Panesso, M., Machado, F.G., Gratwohl, S., Madhurima, K., Hutcheson, J.D., Jain, S., Aikawa, E., Humphreys, B.D., Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease. Cell Stem Cell 19 (2016), 628–642, 10.1016/j.stem.2016.08.001.
Bjornstad, P., Wiromrat, P., Johnson, R.J., Sippl, R., Cherney, D.Z.I., Wong, R., Rewers, M.J., Snell-Bergeon, J.K., Serum uromodulin predicts less coronary artery calcification and diabetic kidney disease over 12 years in adults with type 1 diabetes: the CACTI study. Diabetes Care 42 (2019), 297–302, 10.2337/dc18-1527.
Jin, H., St Hilaire, C., Huang, Y., Yang, D., Dmitrieva, N.I., Negro, A., Schwartzbeck, R., Liu, Y., Yu, Z., Walts, A., Davaine, J.-M., Lee, D.-Y., Donahue, D., Hsu, K.S., Chen, J., Cheng, T., Gahl, W., Chen, G., Boehm, M., Increased activity of TNAP compensates for reduced adenosine production and promotes ectopic calcification in the genetic disease ACDC. Sci. Signal., ra121–ra121, 2016, 10.1126/scisignal.aaf9109.
St Hilaire, C., Ziegler, S.G., Markello, T.C., Brusco, A., Groden, C., Gill, F., Carlson-Donohoe, H., Lederman, R.J., Chen, M.Y., Yang, D., Siegenthaler, M.P., Arduino, C., Mancini, C., Freudenthal, B., Stanescu, H.C., Zdebik, A.A., Chaganti, R.K., Nussbaum, R.L., Kleta, R., Gahl, W.A., Boehm, M., NT5E mutations and arterial calcifications. N. Engl. J. Med. 364 (2011), 432–442, 10.1056/NEJMoa0912923.
Kunutsor, S.K., Bakker, S.J.L., Kootstra-Ros, J.E., Gansevoort, R.T., Gregson, J., Dullaart, R.P.F., Serum alkaline phosphatase and risk of incident cardiovascular disease: Interrelationship with high sensitivity C-reactive protein. PLoS One 10 (2015), 1–16, 10.1371/journal.pone.0132822.
London, G.M., Mechanisms of arterial calcifications and consequences for cardiovascular function. Kidney Int. Suppl. 3 (2013), 442–445, 10.1038/kisup.2013.92.
Hruska, K.A., Choi, E.T., Memon, I., Davis, T.K., Mathew, S., Cardiovascular risk in chronic kidney disease (CKD): The CKD-mineral bone disorder (CKD-MBD). Pediatr. Nephrol. 25 (2010), 769–778, 10.1007/s00467-009-1337-0.
Schiffrin, E.L., Lipman, M.L., Mann, J.F.E., Chronic kidney disease: effects on the cardiovascular system. Circulation 116 (2007), 85–97, 10.1161/CIRCULATIONAHA.106.678342.
Shioi, A., Ikari, Y., Plaque calcification during atherosclerosis progression and regression. J. Atheroscler. Thromb. 25 (2018), 294–303, 10.5551/jat.RV17020.
Fahrleitner-Pammer, A., Herberth, J., Browning, S.R., Obermayer-Pietsch, B., Wirnsberger, G., Holzer, H., Dobnig, H., Malluche, H.H., Bone markers predict cardiovascular events in chronic kidney disease. J. Bone Miner. Res. 23 (2008), 1850–1858, 10.1359/jbmr.080610.
Ishimura, E., Okuno, S., Okazaki, H., Norimine, K., Yamakawa, K., Yamakawa, T., Shoji, S., Nishizawa, Y., Inaba, M., Significant association between bone-specific alkaline phosphatase and vascular calcification of the hand arteries in male hemodialysis patients. Kidney Blood Press. Res. 39 (2014), 299–307, 10.1159/000355807.
Briet, M., Maruani, G., Collin, C., Bozec, E., Gauci, C., Boutouyrie, P., Houillier, P., Laurent, S., Froissart, M., Age-independent association between arterial and bone remodeling in mild-to-moderate chronic kidney disease. Nephrol. Dial. Transplant. 25 (2010), 191–197, 10.1093/ndt/gfp373.
Xargay-Torrent, S., Espuña-Capote, N., Montesinos-Costa, M., Prats-Puig, A., Carreras-Badosa, G., Díaz-Roldán, F., De Zegher, F., Ibáñez, L., Bassols, J., López-Bermejo, A., Serum alkaline phosphatase relates to cardiovascular risk markers in children with high calcium-phosphorus product. Sci. Rep. 8 (2018), 1–7, 10.1038/s41598-018-35973-5.
Smith, S.G., Zhou, M.M., The Bromodomain: A new target in emerging epigenetic medicine. ACS Chem. Biol. 11 (2016), 598–608, 10.1021/acschembio.5b00831.
Schooling, C.M., Zhao, J.V., How might bromodomain and extra-terminal (BET) inhibitors operate in cardiovascular disease?. Am. J. Cardiovasc. Drugs. 19 (2019), 107–111, 10.1007/s40256-018-00315-3.
Fontecha-Barriuso, M., Martin-Sanchez, D., Ruiz-Andres, O., Poveda, J., Sanchez-Niño, M.D., Valiño-Rivas, L., Ruiz-Ortega, M., Ortiz, A., Sanz, A.B., Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol. Dial. Transplant. 33 (2018), 1875–1886, 10.1093/ndt/gfy009.
Al-Rashida, M., Iqbal, J., Inhibition of alkaline phosphatase: an emerging new drug target. Mini Rev. Med. Chem. 15 (2015), 41–51, 10.2174/1389557515666150219113205.
Kulikowski, E., Halliday, C., Johansson, J., Sweeney, M., Lebioda, K., Wong, N., Haarhaus, M., Brandenburg, V., Beddhu, S., Tonelli, M., Zoccali, C., Kalantar-Zadeh, K., Apabetalone mediated epigenetic modulation is associated with favorable kidney function and alkaline phosphatase profile in patients with chronic kidney disease. Kidney Blood Press. Res. 43 (2018), 449–457, 10.1159/000488257.
Picaud, S., Wells, C., Felletar, I., Brotherton, D., Martin, S., Savitsky, P., Diez-Dacal, B., Philpott, M., Bountra, C., Lingard, H., Fedorov, O., Muller, S., Brennan, P.E., Knapp, S., Filippakopoulos, P., RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc. Natl. Acad. Sci. 110 (2013), 19754–19759, 10.1073/pnas.1310658110.
Gilham, D., Tsujikawa, L.M., Sarsons, C.D., Halliday, C., Wasiak, S., Stotz, S.C., Jahagirdar, R., Sweeney, M., Johansson, J.O., Wong, N.C.W., Kalantar-Zadeh, K., Kulikowski, E., Apabetalone downregulates factors and pathways associated with vascular calcification. Atherosclerosis. 280 (2019), 75–84, 10.1016/j.atherosclerosis.2018.11.002.
Wasiak, S., Tsujikawa, L.M., Halliday, C., Stotz, S.C., Gilham, D., Jahagirdar, R., Kalantar-Zadeh, K., Robson, R., Sweeney, M., Johansson, J.O., Wong, N.C., Kulikowski, E., Benefit of apabetalone on plasma proteins in renal disease. Kidney Int. Rep. 3 (2018), 711–721, 10.1016/j.ekir.2017.12.001.
KDIGO, Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 7:2017 (2017), 1–59, 10.1053/j.ajkd.2017.07.019.
Ureña-Torres, P., Bover, J., Mazzaferro, S., de Vernejoul, M.C., Cohen-Solal, M., When, how, and why a bone biopsy should be performed in patients with chronic kidney disease. Semin. Nephrol. 34 (2014), 612–625, 10.1016/j.semnephrol.2014.09.004.
Bover, J., Ureña, P., Brandenburg, V., Goldsmith, D., Ruiz, C., DaSilva, I., Bosch, R.J., Adynamic bone disease: from bone to vessels in chronic kidney disease. Semin. Nephrol. 34 (2014), 626–640, 10.1016/j.semnephrol.2014.09.008.
Plouvier, E., Pressac, M., Glikmanas, G., Bogard, M., Thuillier, F., Phosphatases alcalines osseuses et patients en hémodialyse. Immuno-Analyse Biol. Spécialisée. 12 (1997), 342–347, 10.1016/S0923-2532(97)87671-5.
Cepelak, I., Cvoriscec, D., Biochemical markers of bone remodeling - review. Biochem. Medica. 19 (2009), 17–35, 10.11613/BM.2009.003.
Vervloet, M.G., Brandenburg, V.M., Bover, J., Brandenburg, V., Covic, A., Cozzolino, M., Evenepoel, P., Goldsmith, D., Massy, Z., Mazzaferro, S., Ūrena-Torres, P., Vervloet, M., Circulating markers of bone turnover. J. Nephrol. 30 (2017), 663–670, 10.1007/s40620-017-0408-8.
Christenson, R.H., Biochemical markers of bone metabolism: an overview. Clin. Biochem. 30 (1997), 573–593, 10.1016/S0009-9120(97)00113-6.
Seibel, M.J., Biochemical markers of bone turnover. Part 1: biochemistry and variability. Clin. Biochem. 26 (2005), 97–122.
Preedy, V.R., Biomarkers in Bone Disease. 2017, Springer, Netherlands, Dordrecht doi:10.1007/978-94-007-7693-7.
Eastell, R., Szulc, P., Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 5 (2017), 908–923, 10.1016/S2213-8587(17)30184-5.
Khairallah, P., Nickolas, T.L., Management of osteoporosis in CKD. Clin. J. Am. Soc. Nephrol. 13 (2018), 962–969, 10.2215/CJN.11031017.
Nitta, K., Yajima, A., Tsuchiya, K., Management of osteoporosis in chronic kidney disease. Intern. Med. 56 (2017), 3271–3276, 10.2169/internalmedicine.8618-16.
Pimentel, A., Ureña-Torres, P., Zillikens, M.C., Bover, J., Cohen-Solal, M., Fractures in patients with CKD— diagnosis, treatment, and prevention: a review by members of the European Calcified Tissue Society and the European Renal Association of Nephrology Dialysis and Transplantation. Kidney Int. 92 (2017), 1343–1355, 10.1016/j.kint.2017.07.021.