On the Relation Between Jovian Aurorae and the Loading/Unloading of the Magnetic Flux: Simultaneous Measurements From Juno, Hubble Space Telescope, and Hisaki
Magnetosphere; Space telescopes; Unloading; Electron energization; Hubble space telescopes; In-situ measurement; Loading and unloading; Magnetic loading; Magnetic reconnections; Simultaneous measurement; Simultaneous observation; Magnetic flux
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Yao, Zhonghua ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Kurth, W. S.; Department of Physics and Astronomy, University of Iowa, Iowa City, IA, United States
Clark, G.; Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States
Mauk, B. H.; Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States
Kimura, T.; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Ye, S.-Y.; Department of Physics and Astronomy, University of Iowa, Iowa City, IA, United States
Lui, A. T.; Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States
Radioti, Aikaterini ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Palmaerts, Benjamin ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Dunn, W. R.; University College London, Mullard Space Science Laboratory, Dorking, United Kingdom
Ray, L. C.; Department of Physics, Lancaster University, Bailrigg, Lancaster, United Kingdom
Bagenal, F.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States
Badman, S. V.; Department of Physics, Lancaster University, Bailrigg, Lancaster, United Kingdom
Rae, I. J.; University College London, Mullard Space Science Laboratory, Dorking, United Kingdom
Guo, Ruilong ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Pu, Z. Y.; School of Earth and Space Sciences, Peking University, Beijing, China
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Yoshioka, K.; Department of Complexity Science and Engineering, University of Tokyo, Kashiwa, Japan
Nichols, J. D.; Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
Bolton, S. J.; Southwest Research Institute, San Antonio, TX, United States
Levin, S. M.; Jet Propulsion Laboratory, Pasadena, CA, United States
On the Relation Between Jovian Aurorae and the Loading/Unloading of the Magnetic Flux: Simultaneous Measurements From Juno, Hubble Space Telescope, and Hisaki
Publication date :
2019
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
Blackwell Publishing Ltd
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
NASA - National Aeronautics and Space Administration BELSPO - Belgian Science Policy Office JHU - Johns Hopkins University UCB - University of Colorado Boulder JSPS - Japan Society for the Promotion of Science F.R.S.-FNRS - Fonds de la Recherche Scientifique
Akasofu, S.-I. (2017). Auroral substorms: Search for processes causing the expansion phase in terms of the electric current approach. Space Science Reviews, 212(1-2), 341–381. https://doi.org/10.1007/s11214-017-0363-7
Angelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B., Frey, H., Phan, T., Sibeck, D. G., Glassmeier, K. H., Auster, U., Donovan, E., Mann, I. R., Rae, I. J., Russell, C. T., Runov, A., Zhou, X. Z., & Kepko, L. (2008). Tail reconnection triggering substorm onset. Science, 321(5891), 931–935. https://doi.org/10.1126/science.1160495
Angelopoulos, V., Runov, A., Zhou, X.-Z., Turner, D. L., Kiehas, S. A., Li, S.-S., & Shinohara, I. (2013). Electromagnetic snergy conversion at reconnection fronts. Science, 341(6153), 1478–1482. https://doi.org/10.1126/science.1236992
Bagenal, F., & Delamere, P. A. (2011). Flow of mass and energy in the magnetospheres of Jupiter and Saturn. Journal of Geophysical Research, 116, A05209. https://doi.org/10.1029/2010JA016294
Baron, R., Owen, T., Connerney, J., Satoh, T., & Harrington, J. (1996). Solar wind control of Jupiter's H+ 3 auroras. Icarus, 120(2), 437–442. https://doi.org/10.1006/icar.1996.0063
Bolton, S., Levin, S., & Bagenal, F. (2017). Juno's first glimpse of Jupiter's complexity. Geophysical Research Letters, 44, 7663–7667. https://doi.org/10.1002/2017GL074118
Brambles, O. J., Lotko, W., Zhang, B., Lyon, J., & Wiltberger, M. J. (2010). Magnetospheric sawtooth oscillations induced by ionospheric outflow. Science, 332(6034), 1183–1186.
Clarke, J., Ajello, J., Ballester, G., Jaffel, L. B., Connerney, J., Gérard, J.-C., Gladstone, G., Grodent, D., Pryor, W., & Trauger, J. (2002). Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature, 415(6875), 997–1000. https://doi.org/10.1038/415997a
Clarke, J., Nichols, J., Gérard, J. C., Grodent, D., Hansen, K., Kurth, W., Gladstone, G., Duval, J., Wannawichian, S., & Bunce, E. (2009). Response of Jupiter's and Saturn's auroral activity to the solar wind. Journal of Geophysical Research, 114, A05210. https://doi.org/10.1029/2008JA013694
Clarke, J. T., Grodent, D., Cowley, S. W., Bunce, E. J., Zarka, P., Connerney, J. E., & Satoh, T. (2004). Jupiter's aurora. In F. Bagenal, T. E. Dowling, W. B. McKinnon (Eds.). Jupiter: The Planet, Satellites and Magnetosphere (pp. 639–670). Cambridge, UK: Cambridge University Press.
Connerney, J., Benn, M., Bjarno, J., Denver, T., Espley, J., Jorgensen, J., Jorgensen, P., Lawton, P., Malinnikova, A., & Merayo, J. (2017). The Juno magnetic field investigation. Space Science Reviews, 213(1-4), 39–138. https://doi.org/10.1007/s11214-017-0334-z
Connerney, J., & Satoh, T. (2000). The H3 + ion: A remote diagnostic of the Jovian magnetosphere. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 358(1774), 2471–2483. https://doi.org/10.1098/rsta.2000.0661
Cowley, S., & Bunce, E. (2001). Origin of the main auroral oval in Jupiter's coupled magnetosphere–ionosphere system. Planetary and Space Science, 49(10-11), 1067–1088. https://doi.org/10.1016/S0032-0633(00)00167-7
Cowley, S., Bunce, E., Stallard, T., & Miller, S. (2003). Jupiter's polar ionospheric flows: Theoretical interpretation. Geophysical Research Letters, 30(5), L1220. https://doi.org/10.1029/2002GL016030
Cowley, S. W., Nichols, J., & Jackman, C. (2015). Down-tail mass loss by plasmoids in Jupiter's and Saturn's magnetospheres. Journal of Geophysical Research: Space Physics, 120, 6347–6356. https://doi.org/10.1002/2015JA021500
Delamere, P., & Bagenal, F. (2010). Solar wind interaction with Jupiter's magnetosphere. Journal of Geophysical Research, 115, A10201. https://doi.org/10.1029/2010JA015347
Delamere, P., Bagenal, F., Paranicas, C., Masters, A., Radioti, A., Bonfond, B., Ray, L., Jia, X., Nichols, J., & Arridge, C. (2015). Solar wind and internally driven dynamics: Influences on magnetodiscs and auroral responses. Space Science Reviews, 187(1-4), 51–97. https://doi.org/10.1007/s11214-014-0075-1
Delamere, P., Otto, A., Ma, X., Bagenal, F., & Wilson, R. (2015). Magnetic flux circulation in the rotationally driven giant magnetospheres. Journal of Geophysical Research: Space Physics, 120, 4229–4245. https://doi.org/10.1002/2015JA021036
Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6(2), 47–48. https://doi.org/10.1103/PhysRevLett.6.47
Dunn, W. R., Branduardi-Raymont, G., Elsner, R. F., Vogt, M. F., Lamy, L., Ford, P. G., Coates, A. J., Gladstone, G. R., Jackman, C. M., & Nichols, J. D. (2016). The impact of an ICME on the Jovian X-ray aurora. Journal of Geophysical Research: Space Physics, 121, 2274–2307. https://doi.org/10.1002/2015JA021888
Ge, Y., Jian, L., & Russell, C. (2007). Growth phase of Jovian substorms. Geophysical Research Letters, 34, L23106. https://doi.org/10.1029/2007GL031987
Ge, Y., Russell, C., & Khurana, K. (2010). Reconnection sites in Jupiter's magnetotail and relation to Jovian auroras. Planetary and Space Science, 58(11), 1455–1469. https://doi.org/10.1016/j.pss.2010.06.013
Green, J. L., & Boardsen, S. A. (1999). Confinement of nonthermal continuum radiation to low latitudes. Journal of Geophysical Research, 104(A5), 10,307–10,316. https://doi.org/10.1029/1998JA900130
Grodent, D. (2015). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187(1-4), 23–50. https://doi.org/10.1007/s11214-014-0052-8
Grodent, D., Bonfond, B., Yao, Z., Gérard, J. C., Radioti, A., Dumont, M., Palmaerts, B., Adriani, A., Badman, S., & Bunce, E. (2018). Jupiter's aurora observed with HST during Juno orbits 3 to 7. Journal of Geophysical Research: Space Physics, 123, 3299–3319. https://doi.org/10.1002/2017JA025046
Guo, R., Yao, Z., Sergis, N., Wei, Y., Mitchell, D., Roussos, E., Palmaerts, B., Dunn, W., Radioti, A., & Ray, L. C. (2018). Reconnection acceleration in Saturn's dayside magnetodisk: A multicase study with Cassini. The Astrophysical Journal Letters, 868(2), L23. https://doi.org/10.3847/2041-8213/aaedab
Guo, R., Yao, Z., Wei, Y., Ray, L. C., Rae, I., Arridge, C. S., Coates, A., Delamere, P., Sergis, N., & Kollmann, P. (2018). Rotationally driven magnetic reconnection in Saturn's dayside. Nature Astronomy, 2, 640–645. https://doi.org/10.1038/s41550-018-0461-9
Gurnett, D., Kurth, W., Hospodarsky, G., Persoon, A., Zarka, P., Lecacheux, A., Bolton, S., Desch, M., Farrell, W., & Kaiser, M. (2002). Control of Jupiter's radio emission and aurorae by the solar wind. Nature, 415(6875), 985–987. https://doi.org/10.1038/415985a
Henderson, M., Skoug, R., Donovan, E., Thomsen, M., Reeves, G., Denton, M. H., Singer, H., McPherron, R., Mende, S., & Immel, T. (2006). Substorms during the 10–11 August 2000 sawtooth event. Journal of Geophysical Research, 111, A06206. https://doi.org/10.1029/2005JA011366
Hill, T. (1979). Inertial limit on corotation. Journal of Geophysical Research, 84(A11), 6554–6558. https://doi.org/10.1029/JA084iA11p06554
Hill, T. (2001). The Jovian auroral oval. Journal of Geophysical Research, 106(A5), 8101–8107. https://doi.org/10.1029/2000JA000302
Kasahara, S., Kronberg, E., Kimura, T., Tao, C., Badman, S., Masters, A., Retinò, A., Krupp, N., & Fujimoto, M. (2013). Asymmetric distribution of reconnection jet fronts in the Jovian nightside magnetosphere. Journal of Geophysical Research: Space Physics, 118, 375–384. https://doi.org/10.1029/2012JA018130
Khurana, K. K., Kivelson, M. G., Vasyliunas, V. M., Krupp, N., Woch, J., Lagg, A., Mauk, B. H., & Kurth, W. S. (2004). The configuration of Jupiter's magnetosphere. Jupiter: The planet, satellites and magnetosphere (Vol. 1, pp. 593–616). Cambridge, UK: Cambridge University Press.
Kimura, T., Hiraki, Y., Tao, C., Tsuchiya, F., Delamere, P., Yoshioka, K., Murakami, G., Yamazaki, A., Kita, H., & Badman, S. (2018). Response of Jupiter's aurora to plasma mass loading rate monitored by the Hisaki satellite during volcanic eruptions at Io. Journal of Geophysical Research: Space Physics, 123, 1885–1899. https://doi.org/10.1002/2017JA025029
Kimura, T., Nichols, J. D., Gray, R., Tao, C., Murakami, G., Yamazaki, A., Badman, S. V., Tsuchiya, F., Yoshioka, K., & Kita, H. (2017). Transient brightening of Jupiter's aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft. Geophysical Research Letters, 44, 4523–4531. https://doi.org/10.1002/2017GL072912
Kimura, T., Yamazaki, A., Yoshioka, K., Murakami, G., Tsuchiya, F., Kita, H., Tao, C., Yoshikawa, I., Kumamoto, A., & Yamauchi, C. (2019), Development of ground pipeline system for high-level scientific data products of the Hisaki satellite mission and its application to planetary space weather, edited, EDP Sciences. https://doi.org/10.1051/swsc/2019005
Kita, H., Kimura, T., Tao, C., Tsuchiya, F., Misawa, H., Sakanoi, T., Kasaba, Y., Murakami, G., Yoshioka, K., & Yamazaki, A. (2016). Characteristics of solar wind control on Jovian UV auroral activity deciphered by long-term Hisaki EXCEED observations: Evidence of preconditioning of the magnetosphere? Geophysical Research Letters, 43, 6790–6798. https://doi.org/10.1002/2016GL069481
Kronberg, E., Glassmeier, K. H., Woch, J., Krupp, N., Lagg, A., & Dougherty, M. (2007). A possible intrinsic mechanism for the quasi-periodic dynamics of the Jovian magnetosphere. Journal of Geophysical Research, 112, A05203. https://doi.org/10.1029/2006JA011994
Kronberg, E., Kasahara, S., Krupp, N., & Woch, J. (2012). Field-aligned beams and reconnection in the jovian magnetotail. Icarus, 217(1), 55–65. https://doi.org/10.1016/j.icarus.2011.10.011
Kronberg, E., Woch, J., Krupp, N., & Lagg, A. (2008). Mass release process in the Jovian magnetosphere: Statistics on particle burst parameters. Journal of Geophysical Research, 113, A10202. https://doi.org/10.1029/2008JA013332
Kronberg, E., Woch, J., Krupp, N., Lagg, A., Khurana, K., & Glassmeier, K. H. (2005). Mass release at Jupiter: Substorm-like processes in the Jovian magnetotail. Journal of Geophysical Research, 110, A03211. https://doi.org/10.1029/2004JA010777
Kronberg, E. A., Woch, J., Krupp, N., & Lagg, A. (2009). A summary of observational records on periodicities above the rotational period in the Jovian magnetosphere. Annales Geophysicae, 27, 2565–2573. https://doi.org/10.5194/angeo-27-2565-2009
Krupp, N., Woch, J., Lagg, A., Wilken, B., Livi, S., & Williams, D. (1998). Energetic particle bursts in the predawn Jovian magnetotail. Geophysical Research Letters, 25(8), 1249–1252. https://doi.org/10.1029/98GL00863
Kurth, W., Hospodarsky, G., Kirchner, D., Mokrzycki, B., Averkamp, T., Robison, W., Piker, C., Sampl, M., & Zarka, P. (2017). The Juno waves investigation. Space Science Reviews, 213(1-4), 347–392. https://doi.org/10.1007/s11214-017-0396-y
Kurth, W., Imai, M., Hospodarsky, G., Gurnett, D., Louarn, P., Valek, P., Allegrini, F., Connerney, J., Mauk, B., & Bolton, S. (2017). A new view of Jupiter's auroral radio spectrum. Geophysical Research Letters, 44, 7114–7121. https://doi.org/10.1002/2017GL072889
Kurth, W. S., Gurnett, D. A., Clarke, J. T., Zarka, P., Desch, M. D., Kaiser, M. L., Cecconi, B., Lecacheux, A., Farrell, W. M., & Galopeau, P. (2005). An Earth-like correspondence between Saturn's auroral features and radio emission. Nature, 433(7027), 722–725. https://doi.org/10.1038/nature03334
Kurth, W. S., Gurnett, D. A., & Scarf, F. L. (1980). Spatial and temporal studies of Jovian kilometric radiation. Geophysical Research Letters, 7(1), 61–64. https://doi.org/10.1029/GL007i001p00061
Ladreiter, H., Zarka, P., & Lecacheux, A. (1994). Direction finding study of Jovian hectometric and broadband kilometric radio emissions: Evidence for their auroral origin. Planetary and Space Science, 42(11), 919–931. https://doi.org/10.1016/0032-0633(94)90052-3
Louarn, P., Kivelson, M. G., & Kurth, W. S. (2016). On the links between the radio flux and magnetodisk distortions at Jupiter. Journal of Geophysical Research: Space Physics, 121, 9651–9670. https://doi.org/10.1002/2016JA023106
Louarn, P., Kurth, W., Gurnett, D., Hospodarsky, G., Persoon, A., Cecconi, B., Lecacheux, A., Zarka, P., Canu, P., & Roux, A. (2007). Observation of similar radio signatures at Saturn and Jupiter: Implications for the magnetospheric dynamics. Geophysical Research Letters, 34, L20113. https://doi.org/10.1029/2007GL030368
Louarn, P., Mauk, B., Kivelson, M., Kurth, W., Roux, A., Zimmer, C., Gurnett, D., & Williams, D. (2001). A multi-instrument study of a Jovian magnetospheric disturbance. Journal of Geophysical Research, 106(A12), 29,883–29,898. https://doi.org/10.1029/2001JA900067
Louarn, P., Paranicas, C. P., & Kurth, W. S. (2014). Global magnetodisk disturbances and energetic particle injections at Jupiter. Journal of Geophysical Research: Space Physics, 119, 4495–4511. https://doi.org/10.1002/2014JA019846
Louarn, P., Roux, A., Perraut, S., Kurth, W. S., & Gurnett, D. A. (2000). A study of the Jovian “energetic magnetospheric events” observed by Galileo: Role in the radial plasma transport. Journal of Geophysical Research, 105(A6), 13,073–13,088. https://doi.org/10.1029/1999JA900478
Lui, A. (2009). Comment on “Tail Reconnection Triggering Substorm Onset”. Science, 324(5933), 1391. https://doi.org/10.1126/science.1167726
Lui, A. (2015). Dipolarization fronts and magnetic flux transport. Geoscience Letters, 2(1), 15. https://doi.org/10.1186/s40562-015-0032-1
Lui, A. (2018). Review on the characteristics of the current sheet in the Earth's magnetotail. Electric Currents in Geospace and Beyond, 235, 155–175. https://doi.org/10.1002/9781119324522.ch10
Mauk, B., Haggerty, D., Jaskulek, S., Schlemm, C., Brown, L., Cooper, S., Gurnee, R., Hammock, C., Hayes, J., & Ho, G. (2017). The Jupiter Energetic Particle Detector Instrument (JEDI) investigation for the Juno mission. Space Science Reviews, 213(1-4), 289–346. https://doi.org/10.1007/s11214-013-0025-3
Moore, L., O'Donoghue, J., Melin, H., Stallard, T., Tao, C., Zieger, B., Clarke, J., Vogt, M., Bhakyapaibul, T., & Opher, M. (2017). Variability of Jupiter's IR H3 + aurorae during Juno approach. Geophysical Research Letters, 44, 4513–4522. https://doi.org/10.1002/2017GL073156
Morgan, D., & Gurnett, D. A. (1991). The source location and beaming of terrestrial continuum radiation. Journal of Geophysical Research, 96(A6), 9595–9613. https://doi.org/10.1029/91JA00314
Newell, P., Gjerloev, J., & Mitchell, E. (2013). Space climate implications from substorm frequency. Journal of Geophysical Research: Space Physics, 118, 6254–6265. https://doi.org/10.1002/jgra.50597
Newell, P., Sotirelis, T., Liou, K., Meng, C. I., & Rich, F. (2007). A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. Journal of Geophysical Research, 112, A01206. https://doi.org/10.1029/2006JA012015
Nichols, J., Badman, S. V., Bagenal, F., Bolton, S., Bonfond, B., Bunce, E., Clarke, J., Connerney, J., Cowley, S., & Ebert, R. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44, 7643–7652. https://doi.org/10.1002/2017GL073029
Nichols, J., Bunce, E., Clarke, J. T., Cowley, S., Gérard, J. C., Grodent, D., & Pryor, W. R. (2007). Response of Jupiter's UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. Journal of Geophysical Research, 112, A02203. https://doi.org/10.1029/2006JA012005
Radioti, A., Grodent, D., Gérard, J. C., Bonfond, B., & Clarke, J. (2008). Auroral polar dawn spots: Signatures of internally driven reconnection processes at Jupiter's magnetotail. Geophysical Research Letters, 35, L03104. https://doi.org/10.1029/2007GL032460
Russell, C., Khurana, K., Huddleston, D., & Kivelson, M. (1998). Localized reconnection in the near Jovian magnetotail. Science, 280(5366), 1061–1064. https://doi.org/10.1126/science.280.5366.1061
Shukhtina, M., Dmitrieva, N., & Sergeev, V. (2014). On the conditions preceding sudden magnetotail magnetic flux unloading. Geophysical Research Letters, 41, 1093–1099. https://doi.org/10.1002/2014GL059290
Tao, C., Kataoka, R., Fukunishi, H., Takahashi, Y., & Yokoyama, T. (2005). Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements. Journal of Geophysical Research, 110, A11208. https://doi.org/10.1029/2004JA010959
Vasyliunas, V. (1983). Plasma distribution and flow. In A. J. Dessler (Eds.).395–453. New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511564574.013
Vogt, M. F., Jackman, C. M., Slavin, J. A., Bunce, E. J., Cowley, S. W., Kivelson, M. G., & Khurana, K. K. (2014). Structure and statistical properties of plasmoids in Jupiter's magnetotail. Journal of Geophysical Research: Space Physics, 119, 821–843. https://doi.org/10.1002/2013JA019393
Vogt, M. F., Kivelson, M. G., Khurana, K. K., Joy, S. P., & Walker, R. J. (2010). Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. Journal of Geophysical Research, 115, A06219. https://doi.org/10.1029/2009JA015098
Woch, J., Krupp, N., & Lagg, A. (2002). Particle bursts in the Jovian magnetosphere: Evidence for a near-Jupiter neutral line. Geophysical Research Letters, 29(7), 1138. https://doi.org/10.1029/2001GL014080
Yao, Z. (2017). Observations of loading-unloading process at Saturn's distant magnetotail. Earth and Planetary Physics, 1(1), 53–57. https://doi.org/10.26464/epp2017007
Yao, Z., Radioti, A., Grodent, D., Ray, L. C., Palmaerts, B., Sergis, N., Dialynas, K., Coates, A., Arridge, C. S., & Roussos, E. (2018). Recurrent magnetic dipolarization at Saturn: Revealed by Cassini. Journal of Geophysical Research: Space Physics, 123, 8502–8517. https://doi.org/10.1029/2018JA025837
Yoshioka, K., Murakami, G., Yamazaki, A., Tsuchiya, F., Kagitani, M., Sakanoi, T., Kimura, T., Uemizu, K., Uji, K., & Yoshikawa, I. (2013). The extreme ultraviolet spectroscope for planetary science, EXCEED. Planetary and Space Science, 85, 250–260. https://doi.org/10.1016/j.pss.2013.06.021