[en] Carbonyl sulfide (OCS) provides a proxy for measuring photosynthesis and is the primary background source of stratospheric aerosols. OCS emissions due to biomass burning are a variable and substantial (over 10%) part of the current OCS budget. OCS emission ratios from open burning fires, coupled with 1997–2016 data from the Global Fire Emissions Database (GFED4), yield OCS biomass burning emissions with a global average annual flux of 60 ± 37 Gg(S)/year. A global box model suggests these emissions are more consistent with observations from global atmospheric composition monitoring networks than fluxes derived from previous synthesis papers. Even after considering the uncertainty in emission factor observations for each category of emissions and the interannual variation in total burned dry matter, the total OCS emissions from open burning are insufficient to account for the large imbalance between current estimates of global OCS sources and sinks.
Research Center/Unit :
Sphères - SPHERES
Disciplines :
Earth sciences & physical geography
Author, co-author :
Stinecipher, James R.
Cameron-Smith, Philip J.
Blake, Nicola J.
Kuai, Le
Lejeune, Bernard ; Université de Liège - ULiège > Form. doct. sc. (sc. spatiales - Bologne)
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Simpson, Isobel J.
Campbell, John Elliott
Language :
English
Title :
Biomass Burning Unlikely to Account for Missing Source of Carbonyl Sulfide
Publication date :
December 2019
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
Wiley, Washington, United States - District of Columbia
F.R.S.-FNRS - Fonds de la Recherche Scientifique BELSPO - Politique scientifique fédérale Office Fédéral de Météorologie et de Climatologie MétéoSuisse FWB - Fédération Wallonie-Bruxelles
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., & Wennberg, P. O. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11(9), 4039–4072. https://doi.org/10.5194/acp-11-4039-2011
Andreae, M. O. (2019). Emission of trace gases and aerosols from biomass burning—An updated assessment. Atmospheric Chemistry and Physics, 19(13), 8523–8546. https://doi.org/10.5194/acp-19-8523-2019
Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966. https://doi.org/10.1029/2000GB001382
Berry, J., Wolf, A., Campbell, J. E., Baker, I., Blake, N., Blake, D., Denning, A. S., Kawa, S. R., Montzka, S. A., Seibt, U., Stimler, K., Yakir, D., & Zhu, Z. (2013). A coupled model of the global cycles of carbonyl sulfide and CO2: A possible new window on the carbon cycle. Journal of Geophysical Research: Biogeosciences, 118, 842–852. https://doi.org/10.1002/jgrg.20068
Blake, N. J., Streets, D. G., Woo, J. H., Simpson, I. J., Green, J., Meinardi, S., Kita, K., Atlas, E., Fuelberg, H. E., Sachse, G., & Avery, M. A. (2004). Carbonyl sulfide and carbon disulfide: Large-scale distributions over the western Pacific and emissions from Asia during TRACE-P. Journal of Geophysical Research, 109(D15), D15S05. https://doi.org/10.1029/2003JD004259
Campbell, J. E., Berry, J. A., Seibt, U., Smith, S. J., Montzka, S. A., Launois, T., Belviso, S., Bopp, L., & Laine, M. (2017). Large historical growth in global terrestrial gross primary production. Nature, 544(7648), 84–87. https://doi.org/10.1038/nature22030
Campbell, J. E., Carmichael, G. R., Chai, T., Mena-Carrasco, M., Tang, Y., Blake, D. R., Blake, N. J., Vay, S. A., Collatz, G. J., Baker, I., Berry, J. A., Montzka, S. A., Sweeney, C., Schnoor, J. L., & Stanier, C. O. (2008). Photosynthetic control of atmospheric carbonyl sulfide during the growing season. Science, 322(5904), 1085–1088. https://doi.org/10.1126/science.1164015
Campbell, J. E., Whelan, M. E., Seibt, U., Smith, S. J., Berry, J. A., & Hilton, T. W. (2015). Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints. Geophysical Research Letters, 42, 3004–3010. https://doi.org/10.1002/2015GL063445
Chin, M., & Davis, D. D. (1993). Global sources and sinks of OCS and CS2 and their distributions. Global Biogeochemical Cycles, 7(2), 321–337. https://doi.org/10.1029/93GB00568
Crutzen, P. J., & Andreae, M. O. (1990). Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250(4988), 1669–1678. https://doi.org/10.1126/science.250.4988.1669
Crutzen, P. J., Delany, A. C., Greenberg, J., Haagenson, P., Heidt, L., Lueb, R., Pollock, W., Seiler, W., Wartburg, A., & Zimmerman, P. (1985). Tropospheric chemical composition measurements in Brazil during the dry season. Journal of Atmospheric Chemistry, 2(3), 233–256. https://doi.org/10.1007/BF00051075
Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H., & Seiler, W. (1979). Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS. Nature, 282(5736), 253–256. https://doi.org/10.1038/282253a0
Dean, R. B., & Dixon, W. J. (1951). Simplified statistics for small numbers of observations. Analytical Chemistry, 23(4), 636–638. https://doi.org/10.1021/ac60052a025
Du, Q., Zhang, C., Mu, Y., Cheng, Y., Zhang, Y., Liu, C., Song, M., Tian, D., Liu, P., Liu, J., & Xue, C. (2016). An important missing source of atmospheric carbonyl sulfide: Domestic coal combustion: COS From Domestic Coal Combustion. Geophysical Research Letters, 43, 8720–8727. https://doi.org/10.1002/2016GL070075
Duncan, B. N. (2003). Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. Journal of Geophysical Research, 108(D2), 4100. https://doi.org/10.1029/2002JD002378
Giglio, L., Randerson, J. T., & van der Werf, G. R. (2013). Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences, 118, 317–328. https://doi.org/10.1002/jgrg.20042
Kettle, A. J., Kuhn, U., von Hobe, M., Kesselmeier, J., & Andreae, M. O. (2002). Global budget of atmospheric carbonyl sulfide: Temporal and spatial variations of the dominant sources and sinks. Journal of Geophysical Research, 107(D22), 4658. https://doi.org/10.1029/2002JD002187
Khalil, M. A. K., & Rasmussen, R. A. (1984). Global sources, lifetimes and mass balances of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the Earth's atmosphere. Atmospheric Environment, 18(9), 1805–1813. https://doi.org/10.1016/0004-6981(84)90356-1
Lejeune, B., Mahieu, E., Vollmer, M. K., Reimann, S., Bernath, P. F., Boone, C. D., Walker, K. A., & Servais, C. (2017). Optimized approach to retrieve information on atmospheric carbonyl sulfide (OCS) above the Jungfraujoch station and change in its abundance since 1995. Journal of Quantitative Spectroscopy and Radiative Transfer, 186, 81–95. https://doi.org/10.1016/j.jqsrt.2016.06.001
Lennartz, S. T., Marandino, C. A., von Hobe, M., Cortes, P., Quack, B., Simo, R., Booge, D., Pozzer, A., Steinhoff, T., Arevalo-Martinez, D. L., Kloss, C., Bracher, A., Röttgers, R., Atlas, E., & Krüger, K. (2017). Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide. Atmospheric Chemistry and Physics, 17(1), 385–402. https://doi.org/10.5194/acp-17-385-2017
Lennartz, S. T., von Hobe, M., Booge, D., Bittig, H. C., Fischer, T., Gonçalves-Araujo, R., Ksionzek, K. B., Koch, B. P., Bracher, A., Röttgers, R., Quack, B., & Marandino, C. A. (2019). The influence of dissolved organic matter on the marine production of carbonyl sulfide (OCS) and carbon disulfide (CS 2) in the Peruvian upwelling. Ocean Science, 15(4), 1071–1090. https://doi.org/10.5194/os-15-1071-2019
Meinardi, S., Simpson, I. J., Blake, N. J., Blake, D. R., & Rowland, F. S. (2003). Dimethyl disulfide (DMDS) and dimethyl sulfide (DMS) emissions from biomass burning in Australia. Geophysical Research Letters, 30(9), 1454. https://doi.org/10.1029/2003GL016967
Montzka, S. A., Calvert, P., Hall, B. D., Elkins, J. W., Conway, T. J., Tans, P. P., & Sweeney, C. (2007). On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2. Journal of Geophysical Research, 112, D09302. https://doi.org/10.1029/2006JD007665
Nguyen, B. C., Mihalopoulos, N., Putaud, J. P., & Bonsang, B. (1995). Carbonyl sulfide emissions from biomass burning in the tropics. Journal of Atmospheric Chemistry, 22(1-2), 55–65. https://doi.org/10.1007/BF00708181
Page, S. E., Siegert, F., Rieley, J. O., Boehm, H.-D. V., Jaya, A., & Limin, S. (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420(6911), 61–65. https://doi.org/10.1038/nature01131
Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., & Morton, D. C. (2012). Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research, 117, G04012. https://doi.org/10.1029/2012JG002128
Stockwell, C. E., Jayarathne, T., Cochrane, M. A., Ryan, K. C., Putra, E. I., Saharjo, B. H., Nurhayati, A. D., Albar, I., Blake, D. R., Simpson, I. J., Stone, E. A., & Yokelson, R. J. (2016). Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmospheric Chemistry and Physics, 16(18), 11711–11732. https://doi.org/10.5194/acp-16-11711-2016
Suntharalingam, P., Kettle, A. J., Montzka, S. M., & Jacob, D. J. (2008). Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: Implications for terrestrial vegetation uptake. Geophysical Research Letters, 35, L19801. https://doi.org/10.1029/2008GL034332
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., & Kasibhatla, P. S. (2017). Global fire emissions estimates during 1997–2016. Earth System Science Data, 9(2), 697–720. https://doi.org/10.5194/essd-9-697-2017
Watts, S. F. (2000). The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmospheric Environment, 34(5), 761–779. https://doi.org/10.1016/S1352-2310(99)00342-8
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., & Soja, A. J. (2011). The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. https://doi.org/10.5194/gmd-4-625-2011
Yokelson, R. J., Susott, R., Ward, D. E., Reardon, J., & Griffith, D. W. T. (1997). Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy. Journal of Geophysical Research, 102(D15), 18,865–18,877. https://doi.org/10.1029/97JD00852
Zumkehr, A., Hilton, T. W., Whelan, M., Smith, S., & Campbell, J. E. (2017). Gridded anthropogenic emissions inventory and atmospheric transport of carbonyl sulfide in the U.S. Journal of Geophysical Research: Atmospheres, 122, 2169–2178. https://doi.org/10.1002/2016JD025550
Zumkehr, A., Hilton, T. W., Whelan, M., Smith, S., Kuai, L., Worden, J., & Campbell, J. E. (2018). Global gridded anthropogenic emissions inventory of carbonyl sulfide. Atmospheric Environment, 183, 11–19. https://doi.org/10.1016/j.atmosenv.2018.03.063
Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I., Blake, D. R., McMeeking, G. R., Sullivan, A., Lee, T., Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D. W. T., Johnson, T. J., & Weise, D. R. (2013). Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes. Atmospheric Chemistry and Physics, 13(3), 1141–1165. https://doi.org/10.5194/acp-13-1141-2013
Asaf, D., Rotenberg, E., Tatarinov, F., Dicken, U., Montzka, S. A., & Yakir, D. (2013). Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux. Nature Geoscience, 6(3), 186–190. https://doi.org/10.1038/ngeo1730
Bingemer, H. G., Andreae, M. O., Andreae, T. W., Artaxo, P., Helas, G., Jacob, D. J., Mihalopoulos, N., & Nguyen, B. C. (1992). Sulfur gases and aerosols in and above the equatorial African rain forest. Journal of Geophysical Research, 97(D6), 6207. https://doi.org/10.1029/91JD01112
Blake, N. J., Campbell, J. E., Vay, S. A., Fuelberg, H. E., Huey, L. G., Sachse, G., Meinardi, S., Beyersdorf, A., Baker, A., Barletta, B., Midyett, J., Doezema, L., Kamboures, M., McAdams, J., Novak, B., Rowland, F. S., & Blake, D. R. (2008). Carbonyl sulfide (OCS): Large-scale distributions over North America during INTEX-NA and relationship to CO2. Journal of Geophysical Research, 113, D09S90. https://doi.org/10.1029/2007JD009163
Conrad, R. (1994). Compensation concentration as critical variable for regulating the flux of trace gases between soil and atmosphere. Biogeochemistry, 27(3), 155–170. https://doi.org/10.1007/BF00000582
Friedli, H. R., Atlas, E., Stroud, V. R., Giovanni, L., Campos, T., & Radke, L. F. (2001). Volatile organic trace gases emitted from North American wildfires. Global Biogeochemical Cycles, 15(2), 435–452. https://doi.org/10.1029/2000GB001328
Kuai, L., Worden, J., Kulawik, S. S., Montzka, S. A., & Liu, J. (2014). Characterization of Aura TES carbonyl sulfide retrievals over ocean. Atmospheric Measurement Techniques, 7(1), 163–172. https://doi.org/10.5194/amt-7-163-2014
Kuai, L., Worden, J. R., Campbell, J. E., Kulawik, S. S., Li, K.-F., Lee, M., Weidner, R. J., Montzka, S. A., Moore, F. L., Berry, J. A., Baker, I., Denning, A. S., Bian, H., Bowman, K. W., Liu, J., & Yung, Y. L. (2015). Estimate of carbonyl sulfide tropical oceanic surface fluxes using Aura Tropospheric Emission Spectrometer observations: Flux inversion for OCS ocean source. Journal of Geophysical Research: Atmospheres, 120, 11,012–11,023. https://doi.org/10.1002/2015JD023493
Liu, X., Huey, L. G., Yokelson, R. J., Selimovic, V., Simpson, I. J., Müller, M., Jimenez, J. L., Campuzano-Jost, P., Beyersdorf, A. J., Blake, D. R., Butterfield, Z., Choi, Y., Crounse, J. D., Day, D. A., Diskin, G. S., Dubey, M. K., Fortner, E., Hanisco, T. F., Hu, W., King, L. E., Kleinman, L., Meinardi, S., Mikoviny, T., Onasch, T. B., Palm, B. B., Peischl, J., Pollack, I. B., Ryerson, T. B., Sachse, G. W., Sedlacek, A. J., Shilling, J. E., Springston, S., St. Clair, J. M., Tanner, D. J., Teng, A. P., Wennberg, P. O., Wisthaler, A., & Wolfe, G. M. (2017). Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications: Western U.S. wildfire emissions. Journal of Geophysical Research: Atmospheres, 122, 6108–6129. https://doi.org/10.1002/2016JD026315
Nguyen, B. C., Putaud, J. P., Mihalopoulos, N., Bonsang, B., & Doan, C. (1994). CH4 and CO emissions from rice straw burning in South East Asia. Environmental Monitoring and Assessment, 31(1-2), 131–137. https://doi.org/10.1007/BF00547188
Simpson, I. J., Akagi, S. K., Barletta, B., Blake, N. J., Choi, Y., Diskin, G. S., Fried, A., Fuelberg, H. E., Meinardi, S., Rowland, F. S., Vay, S. A., Weinheimer, A. J., Wennberg, P. O., Wiebring, P., Wisthaler, A., Yang, M., Yokelson, R. J., & Blake, D. R. (2011). Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN. Atmospheric Chemistry and Physics, 11(13), 6445–6463. https://doi.org/10.5194/acp-11-6445-2011
Stockwell, C. E., Christian, T. J., Goetz, J. D., Jayarathne, T., Bhave, P. V., Praveen, P. S., Adhikari, S., Maharjan, R., DeCarlo, P. F., Stone, E. A., Saikawa, E., Blake, D. R., Simpson, I. J., Yokelson, R. J., & Panday, A. K. (2016). Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmospheric Chemistry and Physics, 16(17), 11,043–11,081. https://doi.org/10.5194/acp-16-11043-2016
Thornton, D. C., Bandy, A. R., Blomquist, B. W., & Anderson, B. E. (1996). Impact of anthropogenic and biogenic sources and sinks on carbonyl sulfide in the North Pacific troposphere. Journal of Geophysical Research, 101(D1), 1873–1881. https://doi.org/10.1029/95JD00617
Whelan, M. E., Hilton, T. W., Berry, J. A., Berkelhammer, M., Desai, A. R., & Campbell, J. E. (2016). Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake. Atmospheric Chemistry and Physics, 16(6), 3711–3726. https://doi.org/10.5194/acp-16-3711-2016
Yokelson, R. J., Karl, T., Artaxo, P., Blake, D. R., Christian, T. J., Griffith, D. W. T., Guenther, A., & Hao, W. M. (2007). The tropical forest and fire emissions experiment: Overview and airborne fire emission factor measurements. Atmospheric Chemistry and Physics, 7(19), 5175–5196. https://doi.org/10.5194/acp-7-5175-2007
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.