Highlighting convergent evolution in morphological traits in response to climatic gradient in African tropical tree species: The case of genus Guibourtia Benn.
Tosso, Dji-ndé Félicien ; Forest is Life, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
Doucet, Jean-Louis ; Université de Liège - ULiège > Département GxABT > Laboratoire de Foresterie des régions trop. et subtropicales
Daïnou, Kasso ; Université de Liège - ULiège > Département GxABT > Laboratoire de Foresterie des régions trop. et subtropicales
Fayolle, Adeline ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Hambuckers, Alain ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Highlighting convergent evolution in morphological traits in response to climatic gradient in African tropical tree species: The case of genus Guibourtia Benn.
F.R.S.-FNRS - Fonds de la Recherche Scientifique FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture FFEM - Fonds Français pour l'Environnement Mondial
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Acevedo, P., Melo-Ferreira, J., Real, R., & Alves, P. C. (2014). Evidence for niche similarities in the allopatric sister species Lepus castroviejoi and Lepus corsicanus. Journal of Biogeography, 41, 977–986.
Aubreville, A. (1970). Légumineuses-Césalpinioı̈dées. Flore du Cameroun, 9, 339.
Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., … Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x
Burgman, M. A., & Fox, J. C. (2003). Bias in species range estimates from minimum convex polygons: Implications for conservation and options for improved planning. Animal Conservation, 6, 19–28. https://doi.org/10.1017/S1367943003003044
Chazdon, R. L., Careaga, S., Webb, C., & Vargas, O. (2003). Community and phylogenetic structure of reproductive traits of woody species in wet tropical forests. Ecological Monographs, 73, 331–348. https://doi.org/10.1890/02-4037
Cicero, C., & Koo, M. S. (2012). The role of niche divergence and phenotypic adaptation in promoting lineage diversification in the Sage Sparrow (Artemisiospiza belli, Aves: Emberizidae). Biological Journal of the Linnean Society, 107, 332–354. https://doi.org/10.1111/j.1095-8312.2012.01942.x
Cody, M., & Mooney, H. A. (1978). Convergence versus nonconvergence in Mediterranean-climate ecosystems. Annual Review of Ecology and Systematics, 9, 265–321. https://doi.org/10.1146/annurev.es.09.110178.001405
Couvreur, T. L. P., Porter-Morgan, H., Wieringa, J. J., & Chatrou, L. W. (2011). Little ecological divergence associated with speciation in two African rain forest tree genera. BMC Evolutionary Biology, 11(1), 296.
Diniz-Filho, J. A. F., de Sant'Ana, C. E. R., & Bini, L. M. (1998). An eigenvector method for estimating phylogenetic inertia. Evolution, 52(5), 1247–1262.
Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 1. https://doi.org/10.1186/1471-2148-7-214
Dupont, L. M., Rommerskirchen, F., Mollenhauer, G., & Schefuß, E. (2013). Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C 4 plants. Earth and Planetary Science Letters, 375, 408–417. https://doi.org/10.1016/j.epsl.2013.06.005
Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125, 1–15. https://doi.org/10.1086/284325
Fontanella, F. M., Feltrin, N., Avila, L. J., Sites, J. W., & Morando, M. (2012). Early stages of divergence: Phylogeography, climate modeling, and morphological differentiation in the South American lizard Liolaemus petrophilus (Squamata: Liolaemidae). Ecology and Evolution, 2, 792–808.
Fougère-Danezan, M. (2005). Phylogénie moléculaire et morphologique des Detarieae résinifères (Leguminosae, Caesalpinioideae): Contribution à l'étude de l'histoire biogéographique des légumineuses. Toulouse 3, 329 p.
Fougère-Danezan, M., Herendeen, P. S., Maumont, S., & Bruneau, A. (2010). Morphological evolution in the variable resin-producing Detarieae (Fabaceae): Do morphological characters retain a phylogenetic signal? Annals of Botany, 105, 311–325. https://doi.org/10.1093/aob/mcp280
Freckleton, R. P., & Jetz, W. (2008). Space versus phylogeny: Disentangling phylogenetic and spatial signals in comparative data. Proceedings of the Royal Society B: Biological Sciences, 276(1654), 21–30.
Giarla, T. C., & Esselstyn, J. A. (2015). The challenges of resolving a rapid, recent radiation: Empirical and simulated phylogenomics of Philippine shrews. Systematic Biology, 64(5), 727–740. https://doi.org/10.1093/sysbio/syv029
Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27, 857–871. https://doi.org/10.2307/2528823
Grafen, A. (1989). The phylogenetic regression. Philosophical Transactions of the Royal Society B, 326, 119–157. https://doi.org/10.1098/rstb.1989.0106
Gratani, L., Meneghini, M., Pesoli, P., & Crescente, M. (2003). Structural and functional plasticity of Quercus ilex seedlings of different provenances in Italy. Trees, 17, 515–521. https://doi.org/10.1007/s00468-003-0269-8
Guillot, G., & Rousset, F. (2013). Dismantling the mantel tests. Methods in Ecology and Evolution, 4, 336–344. https://doi.org/10.1111/2041-210x.12018
Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
Hardy, O. J., & Pavoine, S. (2012). Assessing phylogenetic signal with measurement error: A comparison of mantel tests, Blomberg et al'.s K and phylogenetic distograms. Evolution, 66, 2614–2621. https://doi.org/10.1111/j.1558-5646.2012.01623.x
Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W., & Sykes, M. T. (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30, 751–777. https://doi.org/10.1177/0309133306071957
Herrera, C. M. (1996). Floral traits and plant adaptation to insect pollinators: A devil's advocate approach. In D. Llyod & S. C. H. Barrett (Eds.), Floral biology (pp. 65–87). New York, NY: Chapman & Hall.
Hoffmann, W. A., da Silva Jr, E. R., Machado, G. C., Bucci, S. J., Scholz, F. G., Goldstein, G., & Meinzer, F. C. (2005). Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna. Oecologia, 145, 306–315. https://doi.org/10.1007/s00442-005-0129-x
Hoffmann, W. A., & Franco, A. C. (2003). Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts. Journal of Ecology, 91, 475–484. https://doi.org/10.1046/j.1365-2745.2003.00777.x
Ives, A. R., Midford, P. E., & Garland, T. (2007). Within-species variation and measurement error in phylogenetic comparative methods. Systematic Biology, 56, 252–270. https://doi.org/10.1080/10635150701313830
Knouft, J. H., Losos, J. B., Glor, R. E., & Kolbe, J. J. (2006). Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology, 87, S29–S38.
Labra, A., Pienaar, J., & Hansen, T. F. (2009). Evolution of thermal physiology in Liolaemus lizards: Adaptation, phylogenetic inertia, and niche tracking. The American Naturalist, 174(2), 204–220.
Laliberté, E., Legendre, P., & Shipley, B. (2014). FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.
Lee, D. W., & Collins, T. M. (2001). Phylogenetic and ontogenetic influences on the distribution of anthocyanins and betacyanins in leaves of tropical plants. International Journal of Plant Sciences, 162, 1141–1153. https://doi.org/10.1086/321926
Léonard, J. (1949). Notulae systematicae IV (Caesalpiniaceae-Amherstieae africanae americanaeque). Bulletin du Jardin Botanique de l'État, Bruxelles/Bulletin van den Rijksplantentuin, Brussel, 383–408.
Léonard, J. (1950). Notulae systematicae IX. Nouvelles observations sur le genre Guibourtia (Caesalpiniaceae). Bulletin du Jardin botanique de l'État a Bruxelles, 20(Fasc. 2), 269–284.
Linder, H. P. (2014). The evolution of African plant diversity. Frontiers in Ecology and Evolution, 2, 38.
Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995–1003. https://doi.org/10.1111/j.1461-0248.2008.01229.x
Losos, J. B., Leal, M., Glor, R. E., de Queiroz, K., Hertz, P. E., Schettino, L. R., … Larson, A. (2003). Niche lability in the evolution of a Caribbean lizard community. Nature, 424, 542–545. https://doi.org/10.1038/nature01814
Maley, J. (1996). The African rain forest–main characteristics of changes in vegetation and climate from the Upper Cretaceous to the Quaternary. Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences, 104, 31–73.
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.
McLennan, D. A., & Brooks, D. R. (1993). The phylogenetic component of cooperative breeding in perching birds: A commentary. The American Naturalist, 141(5), 790–795.
Mitchell, T. D., & Jones, P. D. (2005). An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25, 693–712. https://doi.org/10.1002/joc.1181
Molina-Venegas, R., Aparicio, A., Slingsby, J. A., Lavergne, S., & Arroyo, J. (2015). Investigating the evolutionary assembly of a Mediterranean biodiversity hotspot: Deep phylogenetic signal in the distribution of eudicots across elevational belts. Journal of Biogeography, 42, 507–518. https://doi.org/10.1111/jbi.12398
Morales, E. (2000). Estimating phylogenetic inertia in Tithonia (Asteraceae): A comparative approach. Evolution, 54(2), 475–484. https://doi.org/10.1111/j.0014-3820.2000.tb00050.x
Motta, P. J., & Kotrschal, K. M. (1991). Correlative, experimental, and comparative evolutionary approaches in ecomorphology. Netherlands Journal of Zoology, 42, 400–415. https://doi.org/10.1163/156854291X00414
New, M., Hulme, M., & Jones, P. (1999). Representing twentieth-century space-time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. Journal of Climate, 12, 829–856. https://doi.org/10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2
Ortiz-Medrano, A., Scantlebury, D. P., Vázquez-Lobo, A., Mastretta-Yanes, A., & Piñero, D. (2016). Morphological and niche divergence of pinyon pines. Ecology and Evolution, 6, 2886–2896. https://doi.org/10.1002/ece3.1994
Pagel, M. (1994). Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters. Proceedings of the Royal Society of London B: Biological Sciences, 255, 37–45.
Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290. https://doi.org/10.1093/bioinformatics/btg412
Pateiro-López, B., & Rodrıguez-Casal, A. (2010). Generalizing the convex hull of a sample: The R package alphahull. Journal of Statistical Software, 34, 1–28.
Price, T. (1997). Correlated evolution and independent contrasts. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352, 519–529. https://doi.org/10.1098/rstb.1997.0036
R Development Core Team (2013). RA Lang Environ Stat Comput, 55, 275–286.
Rato, C., Harris, D. J., Perera, A., Carvalho, S. B., Carretero, M. A., & Rödder, D. (2015). A combination of divergence and conservatism in the niche evolution of the Moorish gecko, Tarentola mauritanica (Gekkota: Phyllodactylidae). PLoS ONE, 10, e0127980. https://doi.org/10.1371/journal.pone.0127980
Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
Ribeiro, Â. M., Lloyd, P., Dean, W. R. J., Brown, M., & Bowie, R. C. (2014). The ecological and geographic context of morphological and genetic divergence in an understorey-dwelling bird. PloS ONE, 9(2), e85903.
Ricklefs, R. E. (1987). Community diversity: Relative roles of local and regional processes. Science, 235(4785), 167–171.
Robert, P., & Escoufier, Y. (1976). A unifying tool for linear multivariate statistical methods: The RV-coefficient. Applied Statistics, 25, 257–265. https://doi.org/10.2307/2347233
Rohlf, F. J., & Corti, M. (2000). Use of two-block partial least-squares to study covariation in shape. Systematic Biology, 49, 740–753. https://doi.org/10.1080/106351500750049806
Schluter, D. (1988). Character displacement and the adaptive divergence of finches on islands and continents. The American Naturalist, 131, 799–824. https://doi.org/10.1086/284823
Schoener, T. W. (1968). The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology, 49, 704–726. https://doi.org/10.2307/1935534
Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10, 1115–1123. https://doi.org/10.1111/j.1461-0248.2007.01107.x
Tosso, F., Daïnou, K., Hardy, O. J., Sinsin, B., & Doucet, J.-L. (2015). Le genre Guibourtia Benn., un taxon à haute valeur commerciale et sociétale (synthèse bibliographique). Biotechnologie, Agronomie, Société et Environnement, 19, 71–88.
Tosso, F., Hardy, O. J., Doucet, J. L., Daïnou, K., Kaymak, E., & Migliore, J. (2018). Evolution in the Amphi-Atlantic tropical genus Guibourtia (Fabaceae, Detarioideae), combining NGS phylogeny and morphology. Molecular Phylogenetics and Evolution, 120, 83–93. https://doi.org/10.1016/j.ympev.2017.11.026
Turner, I. M. (2001). The ecology of trees in the tropical rain forest. Cambridge, UK: Cambridge University Press.
Valverde-Barrantes, O. J., Smemo, K. A., & Blackwood, C. B. (2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29, 796–807. https://doi.org/10.1111/1365-2435.12384
VanDerWal, J., Shoo, L. P., Graham, C., & Williams, S. E. (2009). Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? Ecological Modelling, 220, 589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010
Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62, 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x
Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: A toolbox for comparative studies of environmental niche models. Ecography, 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x
Westoby, M., Leishman, M. R., & Lord, J. M. (1995). On misinterpreting the ‘phylogenetic correction’. Journal of Ecology, 83, 531–534. https://doi.org/10.2307/2261605
Wiens, J. J., & Graham, C. H. (2005). Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.