Enhancement of the catalytic performances and lifetime of Ni/γ-Al2O3 catalysts for the steam toluene reforming via the combination of dopants: Inspection of Cu, Co, Fe, Mn and Mo species addition
Claude, Vincent; Mahy, Julien; Tilkin, Rémiet al.
2020 • In Materials Today Chemistry, 15, p. 100229
[en] In this work, the influence of metallic dopant addition in 10 wt. % Ni/γ-Al2O3 catalyst were studied on the material physico-chemical properties and catalytic activity for the toluene steam reforming. Seventeen doped Ni/γ-Al2O3 catalysts were synthesized by sol-gel process. The aim of the study was to determine which elements were the most performing for the doping of 10 wt. % Ni/γ-Al2O3 catalysts. The influence of the dopants were studied through different physico-chemical techniques. It appeared that some dopants showed lower catalytic performances due to high carbon deactivation. Contrarily, some dopants increased the resistance to coking while also improving the catalytic activity. Different mechanisms were proposed to explain these modifications of catalytic behavior. Among all doped Ni/γ-Al2O3 catalysts, the samples which combined Mn+Mo or Co+Mo dopants showed the most performing catalytic performances at 650 °C. Both samples showed high toluene reforming activity and low amounts of carbon deposit.
Disciplines :
Materials science & engineering Chemical engineering
Author, co-author :
Claude, Vincent ; Université de Liège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces
Mahy, Julien ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Tilkin, Rémi ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Lambert, Stéphanie ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Language :
English
Title :
Enhancement of the catalytic performances and lifetime of Ni/γ-Al2O3 catalysts for the steam toluene reforming via the combination of dopants: Inspection of Cu, Co, Fe, Mn and Mo species addition
Claude, V., Courson, C., Köhler, M., Lambert, S.D., Overview and essentials of biomass gasification technologies and their catalytic cleaning methods. Energy Fuels 30 (2016), 8791–8814, 10.1021/acs.energyfuels.6b01642.
Claude, V., Courson, C., Köhler, M., Lambert, S.D., Correction to overview and essentials of biomass gasification technologies and their catalytic cleaning methods. Energy Fuels 30:11 (2016), 8791–8814, 10.1021/acs.energyfuels.6b01642 Energy and Fuels. 31 (2017) 1050. doi:10.1021/acs.energyfuels.6b03436.
Chan, F.L., Tanksale, A., Review of recent developments in Ni-based catalysts for biomass gasification. Renew. Sustain. Energy Rev. 38 (2014), 428–438, 10.1016/j.rser.2014.06.011.
Qiu, M., Li, Y., Wang, T., Zhang, Q., Wang, C., Zhang, X., et al. Upgrading biomass fuel gas by reforming over Ni–MgO/γ-Al2O3 cordierite monolithic catalysts in the lab-scale reactor and pilot-scale multi-tube reformer. Appl. Energy 90 (2012), 3–10, 10.1016/j.apenergy.2011.01.064.
Anis, S., Zainal, Z.a., Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review. Renew. Sustain. Energy Rev. 15 (2011), 2355–2377, 10.1016/j.rser.2011.02.018.
Li, D., Nakagawa, Y., Tomishige, K., Development of Ni-based catalysts for steam reforming of tar derived from biomass pyrolysis. Chin. J. Catal. 33 (2012), 583–594, 10.1016/S1872-2067(11)60359-8.
Świerczyński, D., Libs, S., Courson, C., Kiennemann, a., Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Appl. Catal. B Environ. 74 (2007), 211–222, 10.1016/j.apcatb.2007.01.017.
Kuhn, J.N., Zhao, Z., Senefeld-Naber, A., Felix, L.G., Slimane, R.B., Choi, C.W., et al. Ni-olivine catalysts prepared by thermal impregnation: structure, steam reforming activity, and stability. Appl. Catal. A Gen. 341 (2008), 43–49, 10.1016/j.apcata.2007.12.037.
Zhao, Z., Lakshminarayanan, N., Kuhn, J.N., Senefeld-Naber, A., Felix, L.G., Slimane, R.B., et al. Optimization of thermally impregnated Ni–olivine catalysts for tar removal. Appl. Catal. A Gen. 363 (2009), 64–72, 10.1016/j.apcata.2009.04.042.
Yung, M.M., Jablonski, W.S., Magrini-Bair, K.A., Review of catalytic conditioning of biomass-derived syngas. Energy Fuels 23 (2009), 1874–1887.
Ismagilov, Z.R., Kerzhentsev, M.A., Sazonov, V.A., Tsykoza, L.T., Shikina, N.V., Kuznetsov, V.V., et al. Study of catalysts for catalytic burners for fuel cell power plant reformers. Korean J. Chem. Eng. 20 (2003), 461–467.
Zhao, M., Yang, X., Church, T.L., Harris, A.T., Interaction between a bimetallic Ni–Co catalyst and micrometer-sized CaO for enhanced H2 production during cellulose decomposition. Int. J. Hydrog. Energy 36 (2011), 421–431, 10.1016/j.ijhydene.2010.09.053.
Laosiripojana, N., Sutthisripok, W., Charojrochkul, S., Assabumrungrat, S., Development of Ni–Fe bimetallic based catalysts for biomass tar cracking/reforming: effects of catalyst support and co-fed reactants on tar conversion characteristics. Fuel Process. Technol. 127 (2014), 26–32, 10.1016/j.fuproc.2014.06.015.
Malaibari, Z.O., Croiset, E., Amin, A., Epling, W., Effect of interactions between Ni and Mo on catalytic properties of a bimetallic Ni-Mo/Al2O3 propane reforming catalyst. Appl. Catal. A Gen. 490 (2015), 80–92, 10.1016/j.apcata.2014.11.002.
Wu, H., La Parola, V., Pantaleo, G., Puleo, F., Venezia, A., Liotta, L., Ni-based catalysts for low temperature methane steam reforming: recent results on Ni-Au and comparison with other bi-metallic systems. Catalysts 3 (2013), 563–583, 10.3390/catal3020563.
Tian, D., Liu, Z., Li, D., Shi, H., Pan, W., Cheng, Y., Bimetallic Ni-Fe total-methanation catalyst for the production of substitute natural gas under high pressure. Fuel 104 (2013), 224–229, 10.1016/j.fuel.2012.08.033.
Wang, L., Li, D., Koike, M., Watanabe, H., Xu, Y., Nakagawa, Y., et al. Catalytic performance and characterization of Ni–Co catalysts for the steam reforming of biomass tar to synthesis gas. Fuel 112 (2013), 654–661, 10.1016/j.fuel.2012.01.073.
Nakamura, K., Miyazawa, T., Sakurai, T., Miyao, T., Naito, S., Begum, N., et al. Promoting effect of MgO addition to Pt/Ni/CeO2/Al2O3 in the steam gasification of biomass. Appl. Catal. B Environ. 86 (2009), 36–44, 10.1016/j.apcatb.2008.07.016.
Nishikawa, J., Nakamura, K., Asadullah, M., Miyazawa, T., Kunimori, K., Tomishige, K., Catalytic performance of Ni/CeO2/Al2O3 modified with noble metals in steam gasification of biomass. Catal. Today 131 (2008), 146–155, 10.1016/j.cattod.2007.10.066.
Morales-Cano, F., Lundegaard, L.F., Tiruvalam, R.R., Falsig, H., Skjøth-Rasmussen, M.S., Improving the sintering resistance of Ni/Al2O3 steam-reforming catalysts by promotion with noble metals. Appl. Catal. A Gen. 498 (2015), 117–125, 10.1016/j.apcata.2015.03.016.
Chaiprasert, P., Vitidsant, T., Effects of promoters on biomass gasification using nickel/dolomite catalyst. Korean J. Chem. Eng. 26 (2010), 1545–1549, 10.1007/s11814-009-0259-7.
Dagle, V.L., Dagle, R., Kovarik, L., Genc, A., Wang, Y.G., Bowden, M., et al. Steam reforming of hydrocarbons from biomass-derived syngas over MgAl2O4-supported transition metals and bimetallic IrNi catalysts. Appl. Catal. B Environ. 184 (2016), 142–152, 10.1016/j.apcatb.2015.11.022.
Li, W.Z., Kovarik, L., Mei, D., Liu, J., Wang, Y., Peden, C.H.F., Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres. Nat. Commun., 4, 2013, 10.1038/ncomms3481.
Lu, Y., Kuo, C.-T., Kovarik, L., Hoffman, A.S., Boubnov, A., Driscoll, D.M., et al. A versatile approach for quantification of surface site fractions using reaction kinetics: the case of CO oxidation on supported Ir single atoms and nanoparticles. J. Catal. 378 (2019), 121–130, 10.1016/j.jcat.2019.08.023.
Lu, Y., Wang, J., Yu, L., Kovarik, L., Zhang, X., Hoffman, A.S., et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2 (2019), 149–156, 10.1038/s41929-018-0192-4.
Claude, V., Mahy, J.G., Geens, J., Lambert, S.D., Ni-doped γ-Al2O3 as secondary catalyst for bio-syngas purification: influence of Ni loading, catalyst preparation, and gas composition on catalytic activity. Mater. Today Chem. 13 (2019), 98–109, 10.1016/j.mtchem.2019.05.002.
Claude, V., Mahy, J.G., Geens, J., Courson, C., Lambert, S.D., Synthesis of Ni/γ-Al2O3-SiO2 catalysts with different silicon precursors for the steam toluene reforming. Microporous Mesoporous Mater. 284 (2019), 304–315, 10.1016/j.micromeso.2019.04.027.
Lambert, S., Cellier, C., Ferauche, F., Gaigneaux, E.M., Heinrichs, B., On the structure-sensitivity of 2-butanol dehydrogenation over CU/SiO2 cogelled xerogel catalysts. Catal. Commun. 8 (2007), 2032–2036, 10.1016/j.catcom.2007.04.004.
Mani, S., Kastner, J.R., Juneja, A., Catalytic decomposition of toluene using a biomass derived catalyst. Fuel Process. Technol. 114 (2013), 118–125, 10.1016/j.fuproc.2013.03.015.
Brito, J., Reducibility of Ni-Mo/Al2O3 catalysts: a TPR study. J. Catal. 139 (1993), 540–550, 10.1006/jcat.1993.1047.
Youn, M.H., Seo, J.G., Kim, P., Song, I.K., Role and effect of molybdenum on the performance of Ni-Mo/γ-Al2O3 catalysts in the hydrogen production by auto-thermal reforming of ethanol. J. Mol. Catal. A Chem. 261 (2007), 276–281, 10.1016/j.molcata.2006.08.030.
Koike, M., Ishikawa, C., Li, D., Wang, L., Nakagawa, Y., Tomishige, K., Catalytic performance of manganese-promoted nickel catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Fuel 103 (2013), 122–129, 10.1016/j.fuel.2011.04.009.
Juszczyk, W., Colmenares, J.C., Śrębowata, A., Karpiński, Z., The effect of copper and gold on the catalytic behavior of nickel/alumina catalysts in hydrogen-assisted dechlorination of 1,2-dichloroethane. Catal. Today 169 (2011), 186–191, 10.1016/j.cattod.2010.08.019.
Miranda, B.C., Chimentão, R.J., Szanyi, J., Braga, a.H., Santos, J.B.O., Gispert-Guirado, F., et al. Influence of copper on nickel-based catalysts in the conversion of glycerol. Appl. Catal. B Environ. 166–167 (2015), 166–180, 10.1016/j.apcatb.2014.11.019.
Conner, W.C., Falconer, J.L., Spillover in Heterogeneous Catalysis. 1995.
Pirard, S.L., Mahy, J.G., Pirard, J.-P., Heinrichs, B., Raskinet, L., Lambert, S.D., Development by the sol-gel process of highly dispersed Ni-Cu/SiO2 xerogel catalysts for selective 1,2-dichloroethane hydrodechlorination into ethylene. Microporous Mesoporous Mater., 209, 2015, 10.1016/j.micromeso.2014.08.015.
Sengupta, S., Ray, K., Deo, G., Effects of modifying Ni/Al2O3 catalyst with cobalt on the reforming of CH4 with CO2 and cracking of CH4 reactions. Int. J. Hydrog. Energy 39 (2014), 11462–11472, 10.1016/j.ijhydene.2014.05.058.
Bortolozzi, J.P., Gutierrez, L.B., Ulla, M.a., Synthesis of Ni/Al2O3 and Ni–Co/Al2O3 coatings onto AISI 314 foams and their catalytic application for the oxidative dehydrogenation of ethane. Appl. Catal. A Gen. 452 (2013), 179–188, 10.1016/j.apcata.2012.11.036.
Ashok, J., Kawi, S., Nickel−Iron alloy supported over iron−alumina catalysts for steam reforming of biomass tar model compound. ACS Catal. 4 (2014), 289–301.
Alstrup, I., Carbon formation on nickel and nickel-copper alloy catalysts. Mater. Corros. 372 (1998), 367–372.
Alstrup, I., Clausen, B.S., Olsen, C., Smits, R.H.H., Rostrup-Nielsen, J.R., Promotion of Steam Reforming Catalysts. 1998, Elsevier Masson SAS, 10.1016/S0167-2991(98)80402-3.
Kratzer, P., Hammer, B., Crskov, J., A theoretical study of CH4 dissociation on pure and gold-alloyed Ni(111) surfaces. J. Chem. Phys. 105 (1996), 5595–5604.
Shah, K.A., Tali, B.A., Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 41 (2016), 67–82, 10.1016/j.mssp.2015.08.013.
Hoyos-Palacio, L.M., García, a G., Pérez-Robles, J.F., González, J., V Martínez-Tejada, H., Catalytic effect of Fe, Ni, Co and Mo on the CNTs production. Mater. Sci. Eng. 59 (2014), 1–8, 10.1088/1757-899X/59/1/012005.
Tran, K.Y., Heinrichs, B., Colomer, J.F., Pirard, J.P., Lambert, S., Carbon nanotubes synthesis by the ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co, and Fe-Co/Al2O3 sol-gel catalysts. Appl. Catal. A Gen. 318 (2007), 63–69, 10.1016/j.apcata.2006.10.042.
Nandini, A., Pant, K.K., Dhingra, S.C., K-, CeO2-, and Mn-promoted Ni/Al2O3 catalysts for stable CO2 reforming of methane. Appl. Catal. A Gen. 290 (2005), 166–174, 10.1016/j.apcata.2005.05.016.
Seok, S., Mn-promoted Ni/Al2O3 catalysts for stable carbon dioxide reforming of methane. J. Catal. 209 (2002), 6–15, 10.1006/jcat.2002.3627.
Seok, S.H., Han, S.H., Lee, J.S., The role of MnO in Ni/MnO-Al2O3 catalysts for carbon dioxide reforming of methane. Appl. Catal. A Gen. 215 (2001), 31–38, 10.1016/S0926-860X(01)00528-2.
Borowiecki, T., Dziembaj, R., Drozdek, M., Giecko, G., Pańczyk, M., Piwowarska, Z., Studies of the model Ni-Mo/alumina catalysts in the n-butane hydrogenolysis reaction. Appl. Catal. A Gen. 247 (2003), 17–25, 10.1016/S0926-860X(03)00057-7.
Borowiecki, T., GoÅ„ebiowski, A., StasiÅ„ska, B., Effects of small MoO3 additions on the properties of nickel catalysts for the steam reforming of hydrocarbons. Appl. Catal. A Gen., 1997, 141–156, 10.1016/S0926-860X(96)00355-9.
Maluf, S.S., Assaf, E.M., Ni catalysts with Mo promoter for methane steam reforming. Fuel 88 (2009), 1547–1553, 10.1016/j.fuel.2009.03.025.