[en] The human brain is tightly coupled to the world through its sensory-motor systems—but it also spends a lot of its metabolism talking to itself. One important function of this intrinsic activity is the establishment and updating of event models—representations of the current situation that can predictively guide perception, learning, and action control. Here, we propose that event models largely depend on the default network (DN) midline core that includes the posterior cingulate and anterior medial prefrontal cortex. An increasing body of data indeed suggests that this subnetwork can facilitate stimuli processing during both naturalistic event comprehension and cognitive tasks in which mental representations of prior situations, trials, and task rules can predictively guide attention and performance. This midline core involvement in supporting predictions through event models can make sense of an otherwise complex and conflicting pattern of results regarding the possible cognitive functions subserved by the DN
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aly, M., Chen, J., Turk-Browne, N. B., & Hasson, U. (2018). Learning naturalistic temporal structure in the posterior medial network. Journal of Cognitive Neuroscience, 30(9), 1345–1365. https://doi.org/10.1162/jocn_a_01308.
Andreasen, N. C., O’Leary, D. S., Cizadlo, T., Arndt, S., Rezai, K., Watkins, G. L., Ponto, L. L. B., & Hichwa, R. D. (1995). Remembering the past: Two facets of episodic memory explored with positron emission tomography. The American Journal of Psychiatry, 152(11), 1576–1585. (7485619).
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65(4), 550–562. (20188659).
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316, 29–52. https://doi.org/10.1111/nyas.12360
Axelrod, V., Rees, G., & Bar, M. (2017). The default network and the combination of cognitive processes that mediate self-generated thought. Nature Human Behaviour, 1(12), 896–910. https://doi.org/10.1038/s41562-017-0244-9
Bailey, H. R., Kurby, C. A., Giovannetti, T., & Zacks, J. M. (2013). Action perception predicts action performance. Neuropsychologia, 51(11), 2294–2304. https://doi.org/10.1016/j.neuropsychologia.2013.06.022
Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). Discovering event structure in continuous narrative perception and memory. Neuron, 95(3), 709–721.e5. https://doi.org/10.1016/j.neuron.2017.06.041
Baldassano, C., Hasson, U., & Norman, K. A. (2018). Representation of real-world event schemas during narrative perception. Journal of Neuroscience, 38(45), 9689–9699. https://doi.org/10.1523/JNEUROSCI.0251-18.2018
Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617–629. https://doi.org/10.1038/nrn1476
Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11(7), 280–289.
Bar, M. (2009). The proactive brain: Memory for predictions. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1521), 1235–1243.
Bar, M., Aminoff, E., Mason, M. F., & Fenske, M. (2007). The units of thought. Hippocampus, 17(6), 420–428.
Barsalou, L. W. (2003). Situated simulation in the human conceptual system. Language and Cognitive Processes, 18(5–6), 513–562. https://doi.org/10.1080/01690960344000026
Barsalou, L. W. (2009). Simulation, situated conceptualization, and prediction. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1521), 1281–1289. https://doi.org/10.1098/rstb.2008.0319
Barsalou, L. W. (2016). Situated conceptualization: Theory and applications. In Y. Coello & M. H. Fischer (Eds.), Foundations of embodied cognition: Perceptual and emotional embodiment (pp. 11–37). New York, NY: Routledge/Taylor & Francis Group.
Benoit, R. G., & Schacter, D. L. (2015). Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia, 75, 450–457. https://doi.org/10.1016/j.neuropsychologia.2015.06.034
Ben-Yakov, A., & Dudai, Y. (2011). Constructing realistic engrams: Poststimulus activity of hippocampus and dorsal striatum predicts subsequent episodic memory. The Journal of Neuroscience, 31(24), 9032–9042. https://doi.org/10.1523/JNEUROSCI.0702-11.2011
Ben-Yakov, A., & Henson, R. (2018). The hippocampal film-editor: sensitivity and specificity to event boundaries in continuous experience. Journal of Neuroscience, 38(47), 10057–10068. https://doi.org/10.1523/JNEUROSCI.0524-18.2018
Berntsen, D. (2010). The unbidden past: Involuntary autobiographical memories as a basic mode of remembering. Current Directions in Psychological Science, 19(3), 138–142. https://doi.org/10.1177/0963721410370301
Berntsen, D. (2018). Spontaneous future cognitions: An integrative review. Psychological Research Psychologische Forschung, 83(4), 651–665. https://doi.org/10.1007/s00426-018-1127-z
Bilkey, D. K., & Jensen, C. (this volume). Neural markers of event boundaries. Topics in Cognitive Science.
Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Rao, S. M., & Cox, R. W. (1999). Conceptual processing during the conscious resting state. A functional MRI study. Journal of Cognitive Neuroscience, 11(1), 80–93. (9950716).
Bird, C. M., Keidel, J. L., Ing, L. P., Horner, A. J., & Burgess, N. (2015). Consolidation of complex events via reinstatement in posterior cingulate cortex. Journal of Neuroscience, 35(43), 14426–14434. https://doi.org/10.1523/JNEUROSCI.1774-15.2015
Bonasia, K., Sekeres, M. J., Gilboa, A., Grady, C. L., Winocur, G., & Moscovitch, M. (2018). Prior knowledge modulates the neural substrates of encoding and retrieving naturalistic events at short and long delays. Neurobiology of Learning and Memory, 153, 26–39. https://doi.org/10.1016/j.nlm.2018.02.017
Brod, G., & Shing, Y. L. (2018). Specifying the role of the ventromedial prefrontal cortex in memory formation. Neuropsychologia, 111, 8–15. https://doi.org/10.1016/j.neuropsychologia.2018.01.005
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Großhirnrinde: in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Johann Ambrosius Barth.
Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11(2), 49–57. (17188554).
Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., & Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. The Journal of Neuroscience, 29(6), 1860–1873. (Peer Reviewed Journal: 2009–02211-035).
Bzdok, D., Heeger, A., Langner, R., Laird, A. R., Fox, P. T., Palomero-Gallagher, N., Vogt, B. A., Zilles, K., & Eickhoff, S. B. (2015). Subspecialization in the human posterior medial cortex. NeuroImage, 106, 55–71. https://doi.org/10.1016/j.neuroimage.2014.11.009
Chen, J., Honey, C. J., Simony, E., Arcaro, M. J., Norman, K. A., & Hasson, U. (2016). Accessing real-life episodic information from minutes versus hours earlier modulates hippocampal and high-order cortical dynamics. Cerebral Cortex, 26(8), 3428–3441. https://doi.org/10.1093/cercor/bhv155
Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., & Hasson, U. (2017). Shared memories reveal shared structure in neural activity across individuals. Nature Neuroscience, 20(1), 115–125. https://doi.org/10.1038/nn.4450
Christoff, K., Gordon, A. M., Smallwood, J., Schooler, J. W., & Smith, R. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8719–8724. https://doi.org/10.1073/pnas.0900234106
Christoff, K., Irving, Z. C., Fox, K. C., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, 17(11), 718–731. https://doi.org/10.1038/nrn.2016.113
Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62(1), 73–101. https://doi.org/10.1146/annurev.psych.093008.100427
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. https://doi.org/10.1017/S0140525X12000477
Córcoles-Parada, M., Müller, N. C. J., Ubero, M., Serrano-Del-Pueblo, V. M., Mansilla, F., Marcos-Rabal, P., Artacho-Pérula, E., Dresler, M., Insausti, R., Fernández, G., & Muñoz-López, M. (2017). Anatomical segmentation of the human medial prefrontal cortex. The Journal of Comparative Neurology, 525(10), 2376–2393. https://doi.org/10.1002/cne.24212
Crittenden, B. M., Mitchell, D. J., & Duncan, J. (2015). Recruitment of the default mode network during a demanding act of executive control. eLife, 4, e06481. https://doi.org/10.7554/eLife.06481
D’Argembeau, A. (2013). On the role of the ventromedial prefrontal cortex in self-processing: The valuation hypothesis. Frontiers in Human Neuroscience, 7, 372. https://doi.org/10.3389/fnhum.2013.00372
de Pasquale, F., Corbetta, M., Betti, V., & Della Penna, S. (2018). Cortical cores in network dynamics. NeuroImage, 180, 370–382. https://doi.org/10.1016/j.neuroimage.2017.09.063
de Pasquale, F., Della Penna, S., Sporns, O., Romani, G. L., & Corbetta, M. (2016). A dynamic core network and global efficiency in the resting human brain. Cerebral Cortex, 26(10), 4015–4033. https://doi.org/10.1093/cercor/bhv185
Dixon, M. L., Andrews-Hanna, J. R., Spreng, R. N., Irving, Z. C., Mills, C., Girn, M., & Christoff, K. (2017). Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. NeuroImage, 147, 632–649. https://doi.org/10.1016/j.neuroimage.2016.12.073
Dixon, M. L., Fox, K. C., & Christoff, K. (2014). A framework for understanding the relationship between externally and internally directed cognition. Neuropsychologia, 62, 321–330. https://doi.org/10.1016/j.neuropsychologia.2014.05.024
Dohmatob, E., Dumas, G., & Bzdok, D. (2017). Dark control: A unified account of default mode function by control theory and reinforcement learning. BioRxiv, 148890. https://doi.org/10.1101/148890
Eisenberg, M. L., Zacks, J. M., & Flores, S. (2018). Dynamic prediction during perception of everyday events. Cognitive Research: Principles and Implications, 3(1), 53. https://doi.org/10.1186/s41235-018-0146-z
Ferstl, E. C., Neumann, J., Bogler, C., & von Cramon, D. Y. (2008). The extended language network: A meta-analysis of neuroimaging studies on text comprehension. Human Brain Mapping, 29(5), 581–593.
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711. https://doi.org/10.1038/nrn2201
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. PNAS: Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678. (Peer Reviewed Journal: 2007–01782-001).
Friston, K. J., Rosch, R., Parr, T., Price, C., & Bowman, H. (2017). Deep temporal models and active inference. Neuroscience & Biobehavioral Reviews, 77, 388–402. https://doi.org/10.1016/j.neubiorev.2017.04.009
Gilboa, A., & Marlatte, H. (2017). Neurobiology of schemas and schema-mediated memory. Trends in Cognitive Sciences, 21(8), 618–631. https://doi.org/10.1016/j.tics.2017.04.013
González-García, C., Flounders, M. W., Chang, R., Baria, A. T., & He, B. J. (2018). Content-specific activity in frontoparietal and default-mode networks during prior-guided visual perception. eLife, 7, e36068. https://doi.org/10.7554/eLife.36068
Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258. (12506194).
Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences, 98(7), 4259–4264. (11259662).
Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews Neuroscience, 2(10), 685–694. (11584306).
Hall, S. A., Rubin, D. C., Miles, A., Davis, S. W., Wing, E. A., Cabeza, R., & Berntsen, D. (2014). The neural basis of involuntary episodic memories. Journal of Cognitive Neuroscience, 26(10), 2385–2399. https://doi.org/10.1162/jocn_a_00633
Hasson, U., Chen, J., & Honey, C. J. (2015). Hierarchical process memory: memory as an integral component of information processing. Trends in Cognitive Sciences, 19(6), 304–313. https://doi.org/10.1016/j.tics.2015.04.006
Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject synchronization of cortical activity during natural vision. Science, 303(5664), 1634–1640. https://doi.org/10.1126/science.1089506
Hasson, U., Yang, E., Vallines, I., Heeger, D. J., & Rubin, N. (2008). A hierarchy of temporal receptive windows in human cortex. Journal of Neuroscience, 28(10), 2539–2550. https://doi.org/10.1523/JNEUROSCI.5487-07.2008
Hohwy, J. (2012). Attention and conscious perception in the hypothesis testing brain. Frontiers in Psychology, 3, 96. https://doi.org/10.3389/fpsyg.2012.00096
Huff, M., Maurer, A. E., Brich, I., Pagenkopf, A., Wickelmaier, F., & Papenmeier, F. (2018). Construction and updating of event models in auditory event processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(2), 307–320. https://doi.org/10.1037/xlm0000482
Jonker, T. R., Dimsdale-Zucker, H., Ritchey, M., Clarke, A., & Ranganath, C. (2018). Neural reactivation in parietal cortex enhances memory for episodically linked information. Proceedings of the National Academy of Sciences, 115(43), 11084–11089. https://doi.org/10.1073/pnas.1800006115
Kabbara, A., Falou, W. E., Khalil, M., Wendling, F., & Hassan, M. (2017). The dynamic functional core network of the human brain at rest. Scientific Reports, 7(1), 2936. https://doi.org/10.1038/s41598-017-03420-6
Kahl, S., & Kopp, S. (2018). A predictive processing model of perception and action for self-other distinction. Frontiers in Psychology, 9, 2421. https://doi.org/10.3389/fpsyg.2018.02421
Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39(1), 527–537. https://doi.org/10.1016/j.neuroimage.2007.08.008
Kim, H. (2012). A dual-subsystem model of the brain’s default network: Self-referential processing, memory retrieval processes, and autobiographical memory retrieval. NeuroImage, 61(4), 966–977. https://doi.org/10.1016/j.neuroimage.2012.03.025
Kim, H. (2016). Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison. Neuropsychologia, 80, 35–46. https://doi.org/10.1016/j.neuropsychologia.2015.11.006
Konishi, M., McLaren, D. G., Engen, H., & Smallwood, J. (2015). Shaped by the past: The default mode network supports cognition that is independent of immediate perceptual input. PLoS ONE, 10(6), e0132209. https://doi.org/10.1371/journal.pone.0132209
Koshino, H., Minamoto, T., Yaoi, K., Osaka, M., & Osaka, N. (2014). Coactivation of the default mode network regions and working memory network regions during task preparation. Scientific Reports, 4, 5954. https://doi.org/10.1038/srep05954
Krieger-Redwood, K., Jefferies, E., Karapanagiotidis, T., Seymour, R., Nunes, A., Ang, J. W. A., Majernikova, V., Mollo, G., & Smallwood, J. (2016). Down but not out in posterior cingulate cortex: Deactivation yet functional coupling with prefrontal cortex during demanding semantic cognition. NeuroImage, 141, 366–377. https://doi.org/10.1016/j.neuroimage.2016.07.060
Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M., & Valera, E. M. (2017). Dynamic brain network correlates of spontaneous fluctuations in attention. Cerebral Cortex, 27(3), 1831–1840. https://doi.org/10.1093/cercor/bhw029
Kurby, C. A., & Zacks, J. M. (2018). Preserved neural event segmentation in healthy older adults. Psychology and Aging, 33(2), 232–245. https://doi.org/10.1037/pag0000226
Leech, R., Braga, R., & Sharp, D. J. (2012). Echoes of the brain within the posterior cingulate cortex. Journal of Neuroscience, 32(1), 215–222. https://doi.org/10.1523/JNEUROSCI.3689-11.2012
Leech, R., & Sharp, D. J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137(Pt 1), 12–32. https://doi.org/10.1093/brain/awt162
Lerner, Y., Honey, C. J., Silbert, L. J., & Hasson, U. (2011). Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. Journal of Neuroscience, 31(8), 2906–2915. https://doi.org/10.1523/JNEUROSCI.3684-10.2011
Livne, T., & Bar, M. (2016). Cortical integration of contextual information across objects. Journal of Cognitive Neuroscience, 28(7), 948–958. https://doi.org/10.1162/jocn_a_00944
Magliano, J., Kopp, K., McNerney, M. W., Radvansky, G. A., & Zacks, J. M. (2012). Aging and perceived event structure as a function of modality. Aging, Neuropsychology, and Cognition, 19(1–2), 264–282. https://doi.org/10.1080/13825585.2011.633159
Maillet, D., Seli, P., & Schacter, D. L. (2017). Mind-wandering and task stimuli: Stimulus-dependent thoughts influence performance on memory tasks and are more often past- versus future-oriented. Consciousness and Cognition, 52, 55–67. https://doi.org/10.1016/j.concog.2017.04.014
Margulies, D. S., Ghosh, S. S., Goulas, A., Falkiewicz, M., Huntenburg, J. M., Langs, G., Bezgin, G., Eickhoff, S. B., Castellanos, F. X., Petrides, M., Jefferies, E., & Smallwood, J. (2016). Situating the default-mode network along a principal gradient of macroscale cortical organization. Proceedings of the National Academy of Sciences, 113(44), 12574–12579. https://doi.org/10.1073/pnas.1608282113
Margulies, D. S., & Smallwood, J. (2017). Converging evidence for the role of transmodal cortex in cognition. Proceedings of the National Academy of Sciences, 114(48), 12641–12643. https://doi.org/10.1073/pnas.1717374114
Martial, C., Stawarczyk, D., & D’Argembeau, A. (2018). Neural correlates of context-independent and context-dependent self-knowledge. Brain and Cognition, 125, 23–31. https://doi.org/10.1016/j.bandc.2018.05.004
Murphy, C., Wang, H.-T., Konu, D., Lowndes, R., Margulies, D. S., Jefferies, E., & Smallwood, J. (2019). Modes of operation: A topographic neural gradient supporting stimulus dependent and independent cognition. NeuroImage, 186, 487–496. https://doi.org/10.1016/j.neuroimage.2018.11.009
Murray, R. J., Debbané, M., Fox, P. T., Bzdok, D., & Eickhoff, S. B. (2015). Functional connectivity mapping of regions associated with self- and other-processing. Human Brain Mapping, 36(4), 1304–1324. https://doi.org/10.1002/hbm.22703
Murray, R. J., Schaer, M., & Debbané, M. (2012). Degrees of separation: A quantitative neuroimaging meta-analysis investigating self-specificity and shared neural activation between self- and other-reflection. Neuroscience & Biobehavioral Reviews, 36(3), 1043–1059. https://doi.org/10.1016/j.neubiorev.2011.12.013
Norman, K., Polyn, S., Detre, G., & Haxby, J. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424–430.
Oedekoven, C. S. H., Keidel, J. L., Berens, S. C., & Bird, C. M. (2017). Reinstatement of memory representations for lifelike events over the course of a week. Scientific Reports, 7(1), 14305. https://doi.org/10.1038/s41598-017-13938-4
Papenmeier, F., Brockhoff, A., & Huff, M. (2019). Filling the gap despite full attention: The role of fast backward inferences for event completion. Cognitive Research: Principles and Implications, 4(1), 3. https://doi.org/10.1186/s41235-018-0151-2
Pearson, J. M., Heilbronner, S. R., Barack, D. L., Hayden, B. Y., & Platt, M. L. (2011). Posterior cingulate cortex: Adapting behavior to a changing world. Trends in Cognitive Sciences, 15(4), 143–151. (21420893)
Radvansky, G. A., & Zacks, J. M. (2014). Event cognition. Oxford, UK: Oxford University Press.
Raichle, M. E. (2006). Neuroscience. The brain’s dark energy. [Erratum appears in Science. 2007 Jan 12;315(5809):187]. Science, 314(5803), 1249–1250. (17124311).
Raichle, M. E., & Gusnard, D. A. (2005). Intrinsic brain activity sets the stage for expression of motivated behavior. Journal of Comparative Neurology, 493(1), 167–176. (16254998)
Ranganath, C., & Ritchey, M. (2012). Two cortical systems for memory-guided behaviour. Nature Reviews Neuroscience, 13(10), 713–726. https://doi.org/10.1038/nrn3338
Rasmussen, A. S., & Bernsten, D. (2009). The possible functions of involuntary autobiographical memories. Applied Cognitive Psychology, 23(8), 1137–1152. https://doi.org/10.1002/acp.1615
Regev, M., Honey, C. J., Simony, E., & Hasson, U. (2013). Selective and invariant neural responses to spoken and written narratives. Journal of Neuroscience, 33(40), 15978–15988. https://doi.org/10.1523/JNEUROSCI.1580-13.2013
Richmond, L. L., & Zacks, J. M. (2017). Constructing experience: Event models from perception to action. Trends in Cognitive Sciences, 21(12), 962–980. https://doi.org/10.1016/j.tics.2017.08.005
Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76(4), 677–694. https://doi.org/10.1016/j.neuron.2012.11.001
Sepulcre, J., Sabuncu, M. R., Yeo, T. B., Liu, H., & Johnson, K. A. (2012). Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain. Journal of Neuroscience, 32(31), 10649–10661. https://doi.org/10.1523/JNEUROSCI.0759-12.2012
Sestieri, C., Shulman, G. L., & Corbetta, M. (2010). Attention to memory and the environment: functional specialization and dynamic competition in human posterior parietal cortex. Journal of Neuroscience, 30(25), 8445–8456. https://doi.org/10.1523/JNEUROSCI.4719-09.2010
Sestieri, C., Shulman, G. L., & Corbetta, M. (2017). The contribution of the human posterior parietal cortex to episodic memory. Nature Reviews Neuroscience, 18(3), 183–192. https://doi.org/10.1038/nrn.2017.6
Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & Petersen, S. E. (1997). Common blood flow changes across visual tasks: II.: Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9(5), 648–663. https://doi.org/10.1162/jocn.1997.9.5.648
Simony, E., Honey, C. J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A., & Hasson, U. (2016). Dynamic reconfiguration of the default mode network during narrative comprehension. Nature Communications, 7, 12141. https://doi.org/10.1038/ncomms12141
Smallwood, J., Brown, K., Baird, B., & Schooler, J. W. (2012). Cooperation between the default mode network and the frontal-parietal network in the production of an internal train of thought. Brain Research, 1428, 60–70. (21466793).
Smallwood, J., Karapanagiotidis, T., Ruby, F., Medea, B., de Caso, I., Konishi, M., Wang, H.-T., Hallam, G., Margulies, D. S., & Jefferies, E. (2016). Representing representation: Integration between the temporal lobe and the posterior cingulate influences the content and form of spontaneous thought. PLoS ONE, 11(4), e0152272. https://doi.org/10.1371/journal.pone.0152272
Smallwood, J., & Schooler, J. W. (2006). The restless mind. Psychological Bulletin, 132(6), 946–958. https://doi.org/10.1037/0033-2909.132.6.946
Smallwood, J., Tipper, C., Brown, K., Baird, B., Engen, H., Michaels, J. R., Grafton, S., & Schooler, J. W. (2013). Escaping the here and now: Evidence for a role of the default mode network in perceptually decoupled thought. NeuroImage, 69, 120–125. https://doi.org/10.1016/j.neuroimage.2012.12.012
Smith, V., Mitchell, D. J., & Duncan, J. (2018). Role of the default mode network in cognitive transitions. Cerebral Cortex, 28(10), 3685–3696. https://doi.org/10.1093/cercor/bhy167
Sonuga-Barke, E. J., & Castellanos, F. X. (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis. Neuroscience and Biobehavioral Reviews, 31(7), 977–986. https://doi.org/10.1016/j.neubiorev.2007.02.005
Speer, N. K., Zacks, J. M., & Reynolds, J. R. (2007). Human brain activity time-locked to narrative event boundaries. Psychological Science, 18(5), 449–455. https://doi.org/10.1111/j.1467-9280.2007.01920.x
Spreng, R. N. (2012). The fallacy of a “task-negative” network. Frontiers in Psychology, 3, 145. https://doi.org/10.3389/fpsyg.2012.00145
Spreng, R. N., DuPre, E., Selarka, D., Garcia, J., Gojkovic, S., Mildner, J., Luh, W.-M., & Turner, G. R. (2014). Goal-congruent default network activity facilitates cognitive control. Journal of Neuroscience, 34(42), 14108–14114. https://doi.org/10.1523/JNEUROSCI.2815-14.2014
Spreng, R. N., Mar, R. A., & Kim, A. S. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489–510. https://doi.org/10.1162/jocn.2008.21029
Stawarczyk, D., & D’Argembeau, A. (2015). Neural correlates of personal goal processing during episodic future thinking and mind-wandering: An ALE meta-analysis. Human Brain Mapping, 36(8), 2928–2947. https://doi.org/10.1002/hbm.22818
Stawarczyk, D., Majerus, S., Maj, M., Van der Linden, M., & D’Argembeau, A. (2011). Mind-wandering: phenomenology and function as assessed with a novel experience sampling method. Acta Psychologica, 136(3), 370–381. https://doi.org/10.1016/j.actpsy.2011.01.002
Stawarczyk, D., Majerus, S., Maquet, P., & D’Argembeau, A. (2011). Neural correlates of ongoing conscious experience: Both task-unrelatedness and stimulus-independence are related to default network activity. PLoS ONE, 6(2), e16997. https://doi.org/10.1371/journal.pone.0016997
Tikka, P., Kauttonen, J., & Hlushchuk, Y. (2018). Narrative comprehension beyond language: Common brain networks activated by a movie and its script. PLoS ONE, 13(7), e0200134. https://doi.org/10.1371/journal.pone.0200134
Tusche, A., Smallwood, J., Bernhardt, B. C., & Singer, T. (2014). Classifying the wandering mind: Revealing the affective content of thoughts during task-free rest periods. NeuroImage, 97, 107–116. https://doi.org/10.1016/j.neuroimage.2014.03.076
van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17(12), 683–696. https://doi.org/10.1016/j.tics.2013.09.012
Van Essen, D. C. (2005). A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. NeuroImage, 28(3), 635–662. https://doi.org/10.1016/j.neuroimage.2005.06.058
van Kesteren, M. T. R., Beul, S. F., Takashima, A., Henson, R. N., Ruiter, D. J., & Fernández, G. (2013). Differential roles for medial prefrontal and medial temporal cortices in schema-dependent encoding: From congruent to incongruent. Neuropsychologia, 51(12), 2352–2359. https://doi.org/10.1016/j.neuropsychologia.2013.05.027
van Kesteren, M. T. R., Fernandez, G., Norris, D. G., & Hermans, E. J. (2010). Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proceedings of the National Academy of Sciences, 107(16), 7550–7555. https://doi.org/10.1073/pnas.0914892107
van Kesteren, M. T. R., Ruiter, D. J., Fernandez, G., & Henson, R. N. (2012). How schema and novelty augment memory formation. Trends in Neurosciences, 35(4), 211–219. https://doi.org/10.1016/j.tins.2012.02.001
Vatansever, D., Manktelow, A., Sahakian, B. J., Menon, D. K., & Stamatakis, E. A. (2018). Default mode network engagement beyond self-referential internal mentation. Brain Connectivity, 8(4), 245–253. https://doi.org/10.1089/brain.2017.0489
Vatansever, D., Menon, D. K., & Stamatakis, E. A. (2017). Default mode contributions to automated information processing. Proceedings of the National Academy of Sciences, 114(48), 12821–12826. https://doi.org/10.1073/pnas.1710521114
Vogt, B. A. (2009). Cingulate neurobiology and disease. Oxford, UK: Oxford University Press.
Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971–978. (16767087)
Whitney, C., Huber, W., Klann, J., Weis, S., Krach, S., & Kircher, T. (2009). Neural correlates of narrative shifts during auditory story comprehension. NeuroImage, 47(1), 360–366. https://doi.org/10.1016/j.neuroimage.2009.04.037
Yarkoni, T., Speer, N. K., & Zacks, J. M. (2008). Neural substrates of narrative comprehension and memory. NeuroImage, 41(4), 1408–1425. https://doi.org/10.1016/j.neuroimage.2008.03.062
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165. https://doi.org/10.1152/jn.00338.2011
Yuan, Y., Major-Girardin, J., & Brown, S. (2018). Storytelling is intrinsically mentalistic: A functional magnetic resonance imaging study of narrative production across modalities. Journal of Cognitive Neuroscience, 30(9), 1298–1314. https://doi.org/10.1162/jocn_a_01294
Zacks, J. M., Braver, T. S., Sheridan, M. A., Donaldson, D. I., Snyder, A. Z., Ollinger, J. M., Buckner, R. L., & Raichle, M. E. (2001). Human brain activity time-locked to perceptual event boundaries. Nature Neuroscience, 4(6), 651–655.
Zacks, J. M., & Ferstl, E. C. (2015). Discourse comprehension. In G. Hickok & S. L. Small (Eds.), Neurobiology of language (pp. 662–674). Amsterdam: Elsevier Science Publishers.
Zacks, J. M., Kurby, C. A., Eisenberg, M. L., & Haroutunian, N. (2011). Prediction error associated with the perceptual segmentation of naturalistic events. Journal of Cognitive Neuroscience, 23(12), 4057–4066. https://doi.org/10.1162/jocn_a_00078
Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event perception: A mind-brain perspective. Psychological Bulletin, 133(2), 273–293.
Zacks, J. M., Speer, N. K., Swallow, K. M., & Maley, C. J. (2010). The brain’s cutting-room floor: Segmentation of narrative cinema. Frontiers in Human Neuroscience, 4, 168. https://doi.org/10.3389/fnhum.2010.00168
Zadbood, A., Chen, J., Leong, Y. C., Norman, K. A., & Hasson, U. (2017). How we transmit memories to other brains: Constructing shared neural representations via communication. Cerebral Cortex, 27(10), 4988–5000. https://doi.org/10.1093/cercor/bhx202
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.