[en] Although highly successful, the truncated Wigner approximation (TWA) leaves out many-body quantum interference between mean-field Gross-Pitaevskii solutions as well as other quantum effects, and is therefore essentially classical. Turned around, if a system’s quantum properties deviate from TWA, they must be exhibiting some quantum phenomenon, such as localization, diffraction, or tunneling. Here, we examine a particular interference effect arising from discrete symmetries, which can significantly enhance quantum observables with respect to the TWA prediction, and derive an augmented TWA in order to incorporate them. Using the Bose-Hubbard model for illustration, we further show strong evidence for the presence of dynamical localization due to remaining differences between the TWA predictions and quantum results.
Disciplines :
Physics
Author, co-author :
Schlagheck, Peter ; Université de Liège - ULiège > Département de physique > Physique quantique statistique
Ullmo, Denis
Urbina, Juan Diego
Richter, Klaus
Tomsovic, Steven
Language :
English
Title :
Enhancement of Many-Body Quantum Interference in Chaotic Bosonic Systems: The Role of Symmetry and Dynamics
Publication date :
2019
Journal title :
Physical Review Letters
ISSN :
0031-9007
eISSN :
1079-7114
Publisher :
American Physical Society, New York, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
W. K. Hensinger, H. Häffner, A. Browaeys, N. R. Heckenberg, K. Helmerson, C. McKenzie, G. J. Milburn, W. D. Phillips, S. L. Rolston, H. Rubinsztein-Dunlop, and B. Upcroft, Nature (London) 412, 52 (2001). NATUAS 0028-0836 10.1038/35083510
S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, Nature (London) 448, 1029 (2007). NATUAS 0028-0836 10.1038/nature06112
M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch, Nature (London) 419, 51 (2002). NATUAS 0028-0836 10.1038/nature00968
T. Engl, J. Dujardin, A. Arguëlles, P. Schlagheck, K. Richter, and J. D. Urbina, Phys. Rev. Lett. 112, 140403 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.140403
T. Engl, J. D. Urbina, K. Richter, and P. Schlagheck, Phys. Rev. A 98, 013630 (2018). PLRAAN 2469-9926 10.1103/PhysRevA.98.013630
J. A. Yeazell, M. Mallalieu, and C. R. Stroud, Phys. Rev. Lett. 64, 2007 (1990). PRLTAO 0031-9007 10.1103/PhysRevLett.64.2007
R. W. Robinett, Phys. Rep. 392, 1 (2004). PRPLCM 0370-1573 10.1016/j.physrep.2003.11.002
S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. Lett. 49, 509 (1982). PRLTAO 0031-9007 10.1103/PhysRevLett.49.509
D. L. Shepelyansky, Physica (Amsterdam) 8D, 208 (1983). PDNPDT 0167-2789 10.1016/0167-2789(83)90318-4
E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984). PRLTAO 0031-9007 10.1103/PhysRevLett.53.1515
R. Ketzmerick, G. Petschel, and T. Geisel, Phys. Rev. Lett. 69, 695 (1992). PRLTAO 0031-9007 10.1103/PhysRevLett.69.695
O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223, 43 (1993). PRPLCM 0370-1573 10.1016/0370-1573(93)90109-Q
P. Ehrenfest, Z. Phys. 45, 455 (1927). ZEPYAA 0044-3328 10.1007/BF01329203
G. P. Berman and G. M. Zaslavsky, Physica (Amsterdam) 91A, 450 (1978). PHYADX 0378-4371 10.1016/0378-4371(78)90190-5
M. J. Steel, M. K. Olsen, L. I. Plimak, P. D. Drummond, S. M. Tan, M. J. Collett, D. F. Walls, and R. Graham, Phys. Rev. A 58, 4824 (1998). PLRAAN 1050-2947 10.1103/PhysRevA.58.4824
A. Sinatra, C. Lobo, and Y. Castin, J. Phys. B 35, 3599 (2002). JPAPEH 0953-4075 10.1088/0953-4075/35/17/301
A. Polkovnikov, Ann. Phys. (Amsterdam) 325, 1790 (2010). ANPYA2 0003-3804 10.1016/j.aop.2010.02.006
R. J. Glauber, Phys. Rev. 131, 2766 (1963). PHRVAO 0031-899X 10.1103/PhysRev.131.2766
P. J. Martin, B. G. Oldaker, A. H. Miklich, and D. E. Pritchard, Phys. Rev. Lett. 60, 515 (1988). PRLTAO 0031-9007 10.1103/PhysRevLett.60.515
D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy (Dover Publications, New York, 1989).
H. U. Baranger, D. P. DiVincenzo, R. A. Jalabert, and A. D. Stone, Phys. Rev. B 44, 10637 (1991). PRBMDO 0163-1829 10.1103/PhysRevB.44.10637
Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013). JUPSAU 0031-9015 10.7566/JPSJ.82.102001
D. Ullmo, P. Schlagheck, J. D. Urbina, K. Richter, and S. Tomsovic (to be published).
P. W. O'Connor and S. Tomsovic, Ann. Phys. (N.Y.) 207, 218 (1991). APNYA6 0003-4916 10.1016/0003-4916(91)90184-A
The time average is done by a convolution with a Gaussian of suitable width (Equation presented).
M. V. Berry, Proc. R. Soc. A 400, 229 (1985). PRLAAZ 1364-5021 10.1098/rspa.1985.0078
X. Sun, H. B. Wang, and W. H. Miller, J. Chem. Phys. 109, 7064 (1998). JCPSA6 0021-9606 10.1063/1.477389
T. Dittrich, C. Viviescas, and L. Sandoval, Phys. Rev. Lett. 96, 070403 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.070403
J. Dujardin, T. Engl, J.-D. Urbina, and P. Schlagheck, Ann. Phys. (Leipzig) 527, 629 (2015). 10.1002/andp.201500113
S. Tomsovic, P. Schlagheck, D. Ullmo, J.-D. Urbina, and K. Richter, Phys. Rev. A 97, 061606(R) (2018). PLRAAN 2469-9926 10.1103/PhysRevA.97.061606
R. G. Littlejohn, J. Stat. Phys. 68, 7 (1992). JSTPBS 0022-4715 10.1007/BF01048836
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.123.215302 where we provide some of the details leading to Eq. (6).
A. M. Ozorio de Almeida, Phys. Rep. 295, 265 (1998). PRPLCM 0370-1573 10.1016/S0370-1573(97)00070-7
S. Tomsovic, Phys. Rev. E 98, 023301 (2018). PRESCM 2470-0045 10.1103/PhysRevE.98.023301
D. Huber and E. J. Heller, J. Chem. Phys. 87, 5302 (1987). JCPSA6 0021-9606 10.1063/1.453647
D. Huber, E. J. Heller, and R. G. Littlejohn, J. Chem. Phys. 89, 2003 (1988). JCPSA6 0021-9606 10.1063/1.455714
H. Pal, M. Vyas, and S. Tomsovic, Phys. Rev. E 93, 012213 (2016). PRESCM 2470-0045 10.1103/PhysRevE.93.012213
M. Baranger, M. A. M. de Aguiar, F. Keck, H. J. Korsch, and B. Schellhaass, J. Phys. A 34, 7227 (2001). JPHAC5 0305-4470 10.1088/0305-4470/34/36/309
The breaking of (Equation presented) symmetry that is implied by this ansatz does not play a significant role for most commonly considered observables, provided the BEC contains a reasonably large number (Equation presented) of particles [40].
E. H. Lieb, R. Seiringer, and J. Yngvason, Rep. Math. Phys. 59, 389 (2007). RMHPBE 0034-4877 10.1016/S0034-4877(07)80074-7
A. Pizzi, F. Dolcini, and K. Le Hur, Phys. Rev. B 99, 094301 (2019). PRBMDO 2469-9950 10.1103/PhysRevB.99.094301
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.