[en] The two main ultraviolet-signatures resulting from the Io-magnetosphere interaction are the local auroras on Io's atmosphere, and the Io footprints on Jupiter. We study here how Io's daily eclipses affect the footprint. Previous observations showed that its atmosphere collapses in eclipse. While remote observers can observe Io's local auroras briefly when Io disappears behind Jupiter, Juno is able to follow the Io footprint in the unlit hemisphere. Theoretical models of the variability of the energy flux fed into the Alfvén wings, ultimately powering the footprints, are not sufficiently constrained by observations. For the first time, we use observations of Io's footprint from the Ultraviolet Spectrograph (UVS) on Juno recorded as Io went into eclipse. We benchmark the trend of the footprint brightness using observations by UVS taken over Io's complete orbit and find that the footprint emitted power variation with Jupiter's rotation shows fairly consistent trends with previous observations. Two exploitable data sets provided measurements when Io was simultaneously in eclipse. No statistically significant changes were recorded as Io left and moved into eclipse, respectively, suggesting either that (i) Io's atmospheric densities within and outside eclipse are large enough to produce a saturated plasma interaction, that is, in the saturated state, changes in Io's atmospheric properties to first order do not control the total Alfvénic energy flux, (ii) the atmospheric collapse during the Juno observations was less than previously observed, or (iii) additional processes of the Alfvén wings in addition to the Poynting flux generated at Io control the footprint luminosity. <P />
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Hue, V.; Southwest Research Institute, San Antonio, TX USA
Greathouse, T. K.; Southwest Research Institute, San Antonio, TX USA
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Saur, J.; Institut für Geophysik und Meteorologie, Universität zu Köln, Cologne, Germany
Gladstone, G. R.; Southwest Research Institute, San Antonio, TX USA ; Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX USA
Roth, L.; School of Electrical Engineering, Royal Institute of Technology KTH, Stockholm, Sweden
Davis, M. W.; Southwest Research Institute, San Antonio, TX USA
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Kammer, J. A.; Southwest Research Institute, San Antonio, TX USA
Szalay, J. R.; Department of Astrophysical Sciences, Princeton University, Princeton, NJ USA
Versteeg, M. H.; Southwest Research Institute, San Antonio, TX USA
Bolton, S. J.; Southwest Research Institute, San Antonio, TX USA
Connerney, J. E. P.; Space Research Corporation, Annapolis, MD USA ; NASA Goddard Spaceflight Center, Greenbelt, MD USA
Levin, S. M.; Jet Propulsion Laboratory, Pasadena, CA USA
Hinton, P. C.; Southwest Research Institute, San Antonio, TX USA ; Laboratory for Atmosphere and Space Physics, University of Colorado Boulder, Boulder, CO USA
Bagenal, F.; Southwest Research Institute, San Antonio, TX USA ; Laboratory for Atmosphere and Space Physics, University of Colorado Boulder, Boulder, CO USA)
Acuna, M. H., Neubauer, F. M., & Ness, N. F. (1981). Standing Alfven wave current system at Io—Voyager 1 observations. Journal of Geophysical Research, 86, 8513–8521.
Bagenal, F., & Delamere, P. A. (2011). Flow of mass and energy in the magnetospheres of Jupiter and Saturn. Journal of Geophysical Research, 116, A05209. https://doi.org/10.1029/2010JA016294
Barbosa, D. D., & Kivelson, M. G. (1983). Dawn-dusk electric field asymmetry of the Io plasma torus. Geophysical Research Letters, 10, 210–213.
Belcher, J. W., Goertz, C. K., Sullivan, J. D., & Acuna, M. H. (1981). Plasma observations of the Alfven wave generated by Io. Journal of Geophysical Research, 86, 8508–8512.
Bhattacharya, B., Thorne, R. M., & Williams, D. J. (2001). On the energy source for diffuse Jovian auroral emissivity. Geophysical Research Letters, 28, 2751–2754.
Bhattacharya, B., Thorne, R. M., Williams, D. J., Khurana, K. K., & Gurnett, D. A. (2005). Diffuse auroral precipitation in the Jovian upper atmosphere and magnetospheric electron flux variability. Icarus, 178, 406–416.
Bigg, E. K. (1964). Influence of the satellite Io on Jupiter's decametric emission. Nature, 203, 1008–1010.
Blöcker, A., Saur, J., Roth, L., & Strobel, D. F. (2018). MHD modeling of the plasma interaction with Io's asymmetric atmosphere. Journal of Geophysical Research: Space Physics, 123, 9286–9311. https://doi.org/10.1029/2018JA025747
Bonfond, B., Gérard, J.-C., Grodent, D., & Saur, J. (2007). Ultraviolet Io footprint short timescale dynamics. Geophysical Research Letters, 34, L06201. https://doi.org/10.1029/2006GL028765
Bonfond, B., Gladstone, G. R., Grodent, D., Greathouse, T. K., Versteeg, M. H., Hue, V., Davis, M. W., Vogt, M. F., Gérard, J.-C., Radioti, A., Bolton, S., Levin, S. M., Connerney, J. E. P., Mauk, B. H., Valek, P., Adriani, A., & Kurth, W. S. (2017). Morphology of the UV aurorae Jupiter during Juno's first perijove observations. Geophysical Research Letters, 44, 4463–4471. https://doi.org/10.1002/2017GL073114
Bonfond, B., Grodent, D., Badman, S. V., Saur, J., Gérard, J.-C., & Radioti, A. (2017). Similarity of the Jovian satellite footprints: Spots multiplicity and dynamics. Icarus, 292, 208–217.
Bonfond, B., Grodent, D., Gérard, J.-C., Radioti, A., Saur, J., & Jacobsen, S. (2008). UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity? Geophysical Research Letters, 35, L05107. https://doi.org/10.1029/2007GL032418
Bonfond, B., Hess, S., Gérard, J.-C., Grodent, D., Radioti, A., Chantry, V., Saur, J., Jacobsen, S., & Clarke, J. T. (2013). Evolution of the Io footprint brightness I: Far-UV observations. Planetary and Space Science, 88, 64–75.
Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V., Gérard, J.-C., & Radioti, A. (2017). The tails of the satellite auroral footprints at Jupiter. Journal of Geophysical Research: Space Physics, 122, 7985–7996. https://doi.org/10.1002/2017JA024370
Chust, T., Roux, A., Kurth, W. S., Gurnett, D. A., Kivelson, M. G., & Khurana, K. K. (2005). Are Io's Alfvén wings filamented? Galileo observations. Planetary and Space Science, 53, 395–412.
Clarke, J. T., Ajello, J., Ballester, G., Ben Jaffel, L., Connerney, J., Gérard, J.-C., Gladstone, G. R., Grodent, D., Pryor, W., Trauger, J., & Waite, J. H. (2002). Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature, 415, 997–1000.
Clarke, J. T., Ajello, J., Luhmann, J., Schneider, N., & Kanik, I. (1994). Hubble space telescope UV spectral observations of Io passing into eclipse. Journal of Geophysical Research, 99, 8387–8402.
Connerney, J. E. P., Acuna, M. H., & Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. Journal of Geophysical Research, 86, 8370–8384.
Connerney, J. E. P., Baron, R., Satoh, T., & Owen, T. (1993). Images of excited H3+ at the foot of the Io flux tube in Jupiter's atmosphere. Science, 262, 1035–1038.
Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., Merayo, J. M. G., Herceg, M., Bloxham, J., Moore, K. M., Bolton, S. J., & Levin, S. M. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophysical Research Letters, 45, 2590–2596. https://doi.org/10.1002/2018GL077312
Connerney, J. E. P., & Satoh, T. (2000). The H 3+ ion: A remote diagnostic of the Jovian magnetosphere, in Astronomy, physics and chemistry of H 3+. Philosophical Transactions of the Royal Society of London Series A, 358, 2359–2559. https://doi.org/10.1098/rsta.2000.0661
Crary, F. J., & Bagenal, F. (1997). Coupling the plasma interaction at Io to Jupiter. Geophysical Research Letters, 24, 2135.
Dols, V., Delamere, P. A., & Bagenal, F. (2008). A multispecies chemistry model of Io's local interaction with the plasma torus. Journal of Geophysical Research, 113, A09208. https://doi.org/10.1029/2007JA012805
Dols, V., Delamere, P. A., Bagenal, F., Kurth, W. S., & Paterson, W. R. (2012). Asymmetry of Io's outer atmosphere: Constraints from five Galileo flybys. Journal of Geophysical Research, 117, E10010. https://doi.org/10.1029/2012JE004076
Feaga, L. M., McGrath, M., & Feldman, P. D. (2009). Io's dayside SO2 atmosphere. Icarus, 201, 570–584.
Geissle, P., McEwen, A., Porco, C., Strobel, D., Saur, J., Ajello, J., & West, R. (2004). Cassini observations of Io's visible aurorae. Icarus, 172, 127–140.
Geissler, P. E., McEwen, A. S., Ip, W., Belton, M. J. S., Johnson, T. V., Smyth, W. H., & Ingersoll, A. P. (1999). Galileo imaging of atmospheric emissions from Io. Science, 285, 870–874.
Gérard, J.-C., Mura, A., Bonfond, B., Gladstone, G. R., Adriani, A., Hue, V., Dinelli, B. M., Greathouse, T. K., Grodent, D., Altieri, F., Moriconi, M. L., Radioti, A., Connerney, J. E. P., Bolton, S. J., & Levin, S. M. (2018). Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno's first perijove. Icarus, 312, 145–156.
Gérard, J.-C., Saglam, A., Grodent, D., & Clarke, J. T. (2006). Morphology of the ultraviolet Io footprint emission and its control by Io's location. Journal of Geophysical Research, 111, A04202. https://doi.org/10.1029/2005JA011327
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., Versteeg, M. H., Persson, K. B., Young, M. K., Dirks, G. J., Sawka, A. O., Tumlinson, J., Sykes, H., Beshears, J., Rhoad, C. L., Cravens, J. P., Winters, G. S., Klar, R. A., Lockhart, W., Piepgrass, B. M., Greathouse, T. K., Trantham, B. J., Wilcox, P. M., Jackson, M. W., Siegmund, O. H. W., Vallerga, J. V., Raffanti, R., Martin, A., Gérard, J.-C., Grodent, D. C., Bonfond, B., Marquet, B., & Denis, F. (2017). The ultraviolet spectrograph on NASA's Juno mission. Space Science Reviews, 213, 447–473.
Gladstone, G. R., Versteeg, M. H., Greathouse, T. K., Hue, V., Davis, M. W., Gérard, J.-C., Grodent, D. C., Bonfond, B., Nichols, J. D., Wilson, R. J., Hospodarsky, G. B., Bolton, S. J., Levin, S. M., Connerney, J. E. P., Adriani, A., Kurth, W. S., Mauk, B. H., Valek, P., McComas, D. J., Orton, G. S., & Bagenal, F. (2017). Juno-UVS approach observations of Jupiter's auroras. Geophysical Research Letters, 44, 7668–7675. https://doi.org/10.1002/2017GL073377
Goertz, C. K. (1980). Io's interaction with the plasma torus. Journal of Geophysical Research, 85, 2949–2956.
Goertz, C. K., & Ip, W.-H. (1984). A dawn-to-dusk electric field in the Jovian magnetosphere. Planetary and Space Science, 32(2), 179–185.
Greathouse, T. K., Gladstone, G. R., Davis, M. W., Slater, D. C., Versteeg, M. H., Persson, K. B., Walther, B. C., Winters, G. S., Persyn, S. C., & Eterno, J. S. (2013). Performance results from in-flight commissioning of the Juno ultraviolet spectrograph (Juno-UVS). Uv, x-ray, and gamma-ray space instrumentation for astronomy xviii, Proceedings Society of Photographic Instrumentation Engineers vol. 8859 p. 88590T.
Grodent, D., Bonfond, B., Radioti, A., Gérard, J.-C., Jia, X., Nichols, J. D., & Clarke, J. T. (2009). Auroral footprint of Ganymede. Journal of Geophysical Research, 114, A07212. https://doi.org/10.1029/2009JA014289
Gurnett, D. A., & Goertz, C. K. (1981). Multiple Alfven wave reflections excited by Io origin of the Jovian decametric arcs. Journal of Geophysical Research, 86, 717–722.
Gustin, J., Gérard, J.-C., Grodent, D., Gladstone, G. R., Clarke, J. T., Pryor, W. R., Dols, V., Bonfond, B., Radioti, A., Lamy, L., & Ajello, J. M. (2013). Effects of methane on giant planet's UV emissions and implications for the auroral characteristics. Journal of Molecular Spectroscopy, 291, 108–117.
Hess, S. L. G., Bonfond, B., Chantry, V., Gérard, J.-C., Grodent, D., Jacobsen, S., & Radioti, A.(2013). Evolution of the Io footprint brightness II: Modeling. Planatary Space Science, 88, 76–85.
Hess, S. L. G., Delamere, P., Dols, V., Bonfond, B., & Swift, D. (2010). Power transmission and particle acceleration along the Io flux tube. Journal of Geophysical Research, 115, A06205. https://doi.org/10.1029/2009JA014928
Hinton, P. C., Bagenal, F., & Bonfond, B. (2019). Alfvén wave propagation in the Io plasma torus. Geophysical Research Letters, 46, 1242–1249. https://doi.org/10.1029/2018GL081472
Hue, V., Gladstone, G. R., Greathouse, T. K., Kammer, J. A., Davis, M. W., Bonfond, B., Versteeg, M. H., Grodent, D. C., Gérard, J.-C., Bolton, S. J., Levin, S. M., & Byron, B. D. (2019). In-flight characterization and calibration of the Juno-ultraviolet spectrograph (Juno-UVS). The Astronomical Journal, 157, 90.
Ip, W.-H., & Goertz, C. K. (1983). An interpretation of the dawn-dusk asymmetry of UV emission from the Io plasma torus. Nature, 302, 232.
Jacobsen, S., Neubauer, F. M., Saur, J., & Schilling, N. (2007). Io's nonlinear MHD-wave field in the heterogeneous Jovian magnetosphere. Geophysical Research Letters, 34, L10202. https://doi.org/10.1029/2006GL029187
Jessup, K. L., & Spencer, J. R. (2015). Spatially resolved HST/STIS observations of Io's dayside equatorial atmosphere. Icarus, 248, 165–189.
Jessup, K. L., Spencer, J. R., Ballester, G. E., Howell, R. R., Roesler, F., Vigel, M., & Yelle, R. (2004). The atmospheric signature of Io's Prometheus plume and anti-Jovian hemisphere: Evidence for a sublimation atmosphere. Icarus, 169, 197–215.
Jia, X., Kivelson, M. G., Khurana, K. K., & Walker, R. J. (2010). Magnetic fields of the satellites of Jupiter and Saturn. Space Science Reviews, 152(1), 271–305. https://doi.org/10.1007/s11214-009-9507-8
Kammer, J. A., Hue, V., Greathouse, T. K., Gladstone, G. R., Davis, M. W., & Versteeg, M. H. (2018). Planning operations in Jupiter's high-radiation environment: optimization strategies from Juno-UVS. Society of photo-optical instrumentation engineers (spie) conference series, vol. 10699, p. 106993A.
Kivelson, M. G., Bagenal, F., Kurth, W. S., Neubauer, F. M., Paranicas, C., & Saur, J. (2004). Magnetospheric interactions with satellites. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. the planet, satellites and magnetosphere (pp. 513–536). Cambridge, UK:Cambridge University Press.
Lellouch, E., Ali-Dib, M., Jessup, K.-L., Smette, A., Käufl, H.-U., & Marchis, F. (2015). Detection and characterization of Io's atmosphere from high-resolution 4-μm spectroscopy. Icarus, 253, 99–114.
Lellouch, E., McGrath, M. A., & Jessup, K. L. (2007). Io's atmosphere. In R. M. C. Lopes, & J. R. Spencer (Eds.), Io after Galileo: A new view of Jupiter's volcanic moon (pp. 231). Berlin, Heidelberg:Springer Praxis Books / Geophysical Sciences.
Li, W., Thorne, R. M., Ma, Q., Zhang, X.-J., Gladstone, G. R., Hue, V., Valek, P. W., Allegrini, F., Mauk, B. H., Clark, G., Kurth, W. S., Hospodarsky, G. B., Connerney, J. E. P., & Bolton, S. J. (2017). Understanding the origin of Jupiter's diffuse aurora using Juno's first perijove observations. Geophysical Research Letters, 44, 10,162–10,170. https://doi.org/10.1002/2017GL075545
Markwardt, C. B. (2009). Non-linear least-squares fitting in IDL with MPFIT. In D. A. Bohlender, D. Durand, & P. Dowler (Eds.), Astronomical data analysis software and systems xviii, Astronomical Society of the Pacific Conference Series (Vol. 411, pp. 251). Maryland:NASA/GSFC.
McGrath, M. A., Belton, M. J. S., Spencer, J. R., & Sartoretti, P. (2000). Spatially resolved spectroscopy of Io's Pele Plume and SO 2 atmosphere. Icarus, 146, 476–493.
Morabito, L. A., Synnott, S. P., Kupferman, P. N., & Collins, S. A. (1979). Discovery of currently active extraterrestrial volcanism. Science, 204, 972.
Mura, A., Adriani, A., Connerney, J. E. P., Bolton, S., Altieri, F., Bagenal, F., Bonfond, B., Dinelli, B. M., Gérard, J.-C., Greathouse, T., Grodent, D., Levin, S., Mauk, B., Moriconi, M. L., Saur, J., Waite, J. H., Amoroso, M., Cicchetti, A., Fabiano, F., Filacchione, G., Grassi, D., Migliorini, A., Noschese, R., Olivieri, A., Piccioni, G., Plainaki, C., Sindoni, G., Sordini, R., Tosi, F., & Turrini, D.(2018). Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 361, 774–777. https://doi.org/10.1126/science.aat1450
Murakami, G., Yoshioka, K., Yamazaki, A., Tsuchiya, F., Kimura, T., Tao, C., Kita, H., Kagitani, M., Sakanoi, T., Uemizu, K., Kasaba, Y., Yoshikawa, I., & Fujimoto, M. (2016). Response of Jupiter's inner magnetosphere to the solar wind derived from extreme ultraviolet monitoring of the Io plasma torus. Geophysical Research Letters, 43, 12,308–12,316. https://doi.org/10.1002/2016GL071675
Neubauer, F. M. (1980). Nonlinear standing Alfven wave current system at Io—Theory. Journal of Geophysical Research, 85, 1171–1178.
Neubauer, F. M. (1998). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. Journal of Geophysical Research, 103, 19,843–19,866.
Peale, S. J., Cassen, P., & Reynolds, R. T. (1979). Melting of Io by tidal dissipation. Science, 203, 892–894.
Pearl, J., Hanel, R., Kunde, V., Maguire, W., Fox, K., Gupta, S., Ponnamperuma, C., & Raulin, F. (1979). Identification of gaseous SO2 and new upper limits for other gases on Io. Nature, 280, 755–758.
Radioti, A., Tomás, A. T., Grodent, D., Gérard, J.-C., Gustin, J., Bonford, B., Krupp, N., Woch, J., & Menietti, J. D. (2009). Equatorward diffuse auroral emissions at Jupiter: Simultaneous HST and Galileo observations. Geophysical Research Letters, 36, L07101. https://doi.org/10.1029/2009GL037857
Retherford, K. D., Moos, H. W., Strobel, D. F., Wolven, B. C., & Roesler, F. L. (2000). Io's equatorial spots: Morphology of neutral UV emissions. Journal of Geophysical Research, 105, 27,157–27,166.
Retherford, K. D., Spencer, J. R., Stern, S. A., Saur, J., Strobel, D. F., Steffl, A. J., Gladstone, G. R., Weaver, H. A., Cheng, A. F., Parker, J. W., Slater, D. C., Versteeg, M. H., Davis, M. W., Bagenal, F., Throop, H. B., Lopes, R. M. C., Reuter, D. C., Lunsford, A., Conard, S. J., Young, L. A., & Moore, J. M. (2007). Io's atmospheric response to eclipse: UV aurorae observations. Science, 318, 237–240.
Roesler, F. L., Moos, H. W., Oliversen, R. J., Woodward, R. C., Retherford, K. D., Scherb, F., McGrath, M. A., Smyth, W. H., Feldman, P. D., & Strobel, D. F. (1999). Far-ultraviolet imaging spectroscopy of Io's atmosphere with HST/STIS. Science, 283, 353–357.
Roth, L., Saur, J., Retherford, K. D., Feldman, P. D., & Strobel, D. F. (2014). A phenomenological model of Io's UV aurora based on HST/STIS observations. Icarus, 228, 386–406.
Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., & Spencer, J. R. (2011). Simulation of Io's auroral emission: Constraints on the atmosphere in eclipse. Icarus, 214, 495–509.
Sandel, B. R., & Broadfoot, A. L. (1982). Io's hot plasma torus—A synoptic view from Voyager. Journal of Geophysical Research, 87, 212–218.
Saur, J., Grambusch, T., Duling, S., Neubauer, F. M., & Simon, S. (2013). Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astronomy & Astrophysics, 552, A119.
Saur, J., Neubauer, F. M., Connerney, J. E. P., Zarka, P., & Kivelson, M. G. (2004). Plasma interaction of Io with its plasma torus. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. the planet, satellites and magnetosphere (Vol. 1, pp. 537–560). Cambridge, UK:Cambridge University Press.
Saur, J., Neubauer, F. M., Strobel, D. F., & Summers, M. E. (1999). Three-dimensional plasma simulation of Io's interaction with the Io plasma torus: Asymmetric plasma flow. Journal of Geophysical Research, 104, 25,105–25,126.
Saur, J., Neubauer, F. M., Strobel, D. F., & Summers, M. E. (2000). Io's ultraviolet aurora: Remote sensing of Io's interaction. Geophysical Research Letters, 27, 2893–2896.
Saur, J., & Strobel, D. F. (2004). Relative contributions of sublimation and volcanoes to Io's atmosphere inferred from its plasma interaction during solar eclipse. Icarus, 171, 411–420.
Saur, J., Strobel, D. F., Neubauer, F. M., & Summers, M. E. (2003). The ion mass loading rate at Io. Icarus, 163, 456–468.
Spencer, J. R., Lellouch, E., Richter, M. J., López-Valverde, M. A., Jessup, K. L., Greathouse, T. K., & Flaud, J.-M. (2005). Mid-infrared detection of large longitudinal asymmetries in Io's SO 2 atmosphere. Icarus, 176, 283–304.
Szalay, J. R., Bonfond, B., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., Connerney, J. E. P., Ebert, R. W., Ergun, R. E., Gladstone, G. R., Grodent, D., Hospodarsky, G. B., Hue, V., Kurth, W. S., Kotsiaros, S., Levin, S. M., Louarn, P., Mauk, B., McComas, D. J., Saur, J., Valek, P. W., & Wilson, R. J. (2018). In situ observations connected to the Io footprint tail aurora. Journal of Geophysical Research: Planets, 123, 3061–3077. https://doi.org/10.1029/2018JE005752
Thomas, N., Bagenal, F., Hill, T. W., & Wilson, J. K. (2004). The Io neutral clouds and plasma torus. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. the planet, satellites and magnetosphere (Vol. 1, pp. 561–591). Cambridge, UK:Cambridge University Press.
Trafton, L. M., Moore, C. H., Goldstein, D. B., Varghese, P. L., & McGrath, M. A. (2012). HST/STIS observations and simulation of Io's emission spectrum in Jupiter shadow: Probing Io's Jupiter-facing eclipse atmosphere. Icarus, 220, 1121–1140.
Tsang, C. C. C., Spencer, J. R., & Jessup, K. L. (2015). Non-detection of post-eclipse changes in Io's Jupiter-facing atmosphere: Evidence for volcanic support? Icarus, 248, 243–253.
Tsang, C. C. C., Spencer, J. R., Lellouch, E., Lopez-Valverde, M. A., & Richter, M. J. (2016). The collapse of Io's primary atmosphere in Jupiter eclipse. Journal of Geophysical Research:Planets, 121, 1400–1410. https://doi.org/10.1002/2016JE005025
Tsang, C. C. C., Spencer, J. R., Lellouch, E., López-Valverde, M. A., Richter, M. J., & Greathouse, T. K.(2012). Io's atmosphere: Constraints on sublimation support from density variations on seasonal timescales using NASA IRTF/TEXES observations from 2001 to 2010. Icarus, 217, 277–296.
Wannawichian, S., Clarke, J. T., Bagenal, F., Smyth, W. H., Peterson, C. A., & Nichols, J. D.(2013). Longitudinal modulation of the brightness of Io's auroral footprint emission: Comparison with models. Journal of Geophysical Research: Space Physics, 118, 3336–3345. https://doi.org/10.1002/jgra.50346
Wannawichian, S., Clarke, J. T., & Nichols, J. D. (2010). Ten years of Hubble Space Telescope observations of the variation of the Jovian satellites' auroral footprint brightness. Journal of Geophysical Research, 115, A02206. https://doi.org/10.1029/2009JA014456