[en] In digital holographic and speckle interferometry devoted to solid objects displacements measurement, the reflecting properties of the object under study are of importance in designing the observation and laser illumination systems. In practical cases, the objects can show separate zones in which the surface property can simultaneously cause either scattering or specular reflectivity. We present strategies for dealing with both reflectivity types at a time in digital holographic and speckle interferometers. The scattered surface is illuminated with point source whereas the specular one is illuminated by a diffuser. Both types of surfaces visible across the field-of-view give rise to specific interferogram with gaps in between, which in turn are interpreted separately related to the sensitivity vector, the latter being defined differently for scattering and specular areas.
Disciplines :
Physics
Author, co-author :
Georges, Marc ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Thizy, Cédric ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Languy, Fabian ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Zhao, Yuchen ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
T. Kreis, Handbook of Holographic Interferometry–Optical and Digital Methods (Wiley, 2005).
R. S. Hansen, “Deformation measurement of specularly reflecting objects using holographic interferometry with diffusive illumination,” Opt. Laser Eng. 28, 259–275 (1997).
R. S. Hansen, “A compact ESPI system for displacement measurements of specular reflecting or optical rough surfaces,” Opt. Laser Eng. 41, 73–80 (2004).
F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
J.-M. Desse and P. Picart, “Stochastic digital holography for visualizing inside strongly refracting transparent objects,” Appl. Opt. 54, A1–A8 (2015).
C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
C. Thizy, M. P. Georges, P. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53, 112309 (2014).
M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [invited],” Appl. Opt. 52, A102–A116 (2013).
J.-F. Vandenrijt, C. Thizy, L. Martin, F. Beaumont, J. Garcia, C. Fabron, E. Prieto, T. Maciaszek, and M. P. Georges, “Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test,” Opt. Eng. 55, 121723 (2016).
N. Xu, X. Xie, X. Chen, and L. Yang, “Shearography for specular object inspection,” Opt. Laser Eng. 61, 14–18 (2014).
P. Yan, Y. Wang, F. Sun, Y. Lu, L. Liu, and Q. Zhao, “Shearography for non-destructive testing of specular reflecting objects using scattered light illumination,” Opt. Laser Technol. 112, 452–457 (2019).
J. Butters and J. Leendertz, “Holographic and video techniques applied to engineering measurement,” J. Meas. Control 4, 349–354 (1971).
R. Jones and C. Wykes, Holographic and Speckle Interferometry, Cambridge Studies in Modern Optics, (Cambridge University, 1989), Vol. 6.
U. Schnars and W. Jueptner, Digital Holography, Digital Hologram Recording, Reconstruction Principle, and Related Techniques (Springer, 2005).
J. C. Li and P. Picart, Digital Holography (Wiley, 2012).
P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008).
P. Picart, M. Gross, and P. Marquet, “Basic fundamentals of digital holography,” in New Techniques in Digital Holography, P. Picart, ed. (Wiley, 2015), pp. 1–66.
S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,” Opt. Laser Eng. 37, 331–340 (2002).
Y. Zhao, R. Zemmamouche, J. F. Vandenrijt, and M. P. Georges, “Accuracy concerns in digital speckle photography combined with digital holographic interferometry,” Opt. Laser Eng. 104, 84–89 (2018).
J. Sollid, “Holographic interferometry applied to measurements of small static displacements of diffusively reflecting surfaces,” Appl. Opt. 8, 1587–1595 (1969).
K. Stetson, “Use of sensitivity vector variations to determine absolute displacements in double exposure hologram interferometry,” Appl. Opt. 29, 502–504 (1990).
J. C. Wyant and V. C. Bennet, “Using computer generated holograms to test aspheric wavefronts,” Appl. Opt. 11, 2833–2839 (1972).
D. Malacara, K. Creath, J. Schmit, and J. C. Wyant, “Testing of aspheric wavefronts and surfaces,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), pp. 435–497.
C. Pruss, S. Reichelt, H. Tiziani, and W. Osten, “Computer generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233, 15–19 (2004).
C. Pruss, G. Baer, J. Schindler, and W. Osten, “Measuring aspheres quickly: tilted wave interferometry,” Opt. Eng. 56, 111713 (2017).
N. Ninane and M. Georges, “Holographic interferometry using two-wavelength holography for the measurement of large deformations,” Appl. Opt. 34, 1923–1928 (1995).
F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Space mirror deformation: from thermo-mechanical measurements by speckle interferometry to optical comparison with multiphysics simulation,” Appl. Opt. 57, 6982–6989 (2018).
F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Mechanical deformations of space mirrors under thermal stress and their effect on wavefront errors. Measurements by ESPI and comparison with multiphysics modeling,” Proc. SPIE 10834, 108340V (2018).
P. Lemaire and M. P. Georges, “Dynamic holographic interferometry: devices and applications,” in Photorefractive Materials and Their Applications, P. Günther and J.-P. Huignard, eds. (Springer, 2007), pp. 223–251.
E. Neefs, A. C. Vandaele, R. Drummond, I. R. Thomas, S. Berkenbosch, R. Clairquin, S. Delanoye, B. Ristic, J. Maes, S. Bonnewijn, G. Pieck, E. Equeter, C. Depiesse, F. Daerden, E. Van Ransbeeck, D. Nevejans, J. Rodriguez-Gómez, J. J. López-Moreno, R. Sanz, R. Morales, G. P. Candini, M. C. Pastor-Morales, B. A. del Moral, J. M. Jeronimo-Zafra, J. M. Gómez-López, G. Alonso-Rodrigo, I. Pérez-Grande, J. Cubas, A. M. Gomez-Sanjuan, F. Navarro-Medina, T. Thibert, M. R. Patel, G. Bellucci, L. De Vos, S. Lesschaeve, N. Van Vooren, W. Moelans, L. Aballea, S. Glorieux, A. Baeke, D. Kendall, J. De Neef, A. Soenen, P.-Y. Puech, J. Ward, J.-F. Jamoye, D. Diez, A. Vicario-Arroyo, and M. Jankowski, “NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1—design, manufacturing and testing of the infrared channels,” Appl. Opt. 54, 8494–8520 (2015).
I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
M. P. Georges, “Speckle interferometry in the long-wave infrared for combining holography and thermography in a single sensor. applications to nondestructive testing: The FANTOM project,” Proc. SPIE 9525, 952557 (2015).
M. P. Georges, J. F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, and W. Osten, “Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths,” Opt. Express 22, 25517–25529 (2014).
M. Georges, “Long-wave infrared digital holography,” in New Techniques in Digital Holography, P. Picart, ed. (Wiley, 2015), pp. 219–254.
J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 µm,” Proc. SPIE 6616, 66162Q (2007).
J.-F. Vandenrijt and M. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 µm,” Appl. Opt. 49, 5067–5075 (2010).
J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. scattering requirements,” in Fringe 2009–6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.