[en] (10) Hygiea is the fourth largest main belt asteroid and the only known asteroid whose surface composition appears similar to that of the dwarf planet (1) Ceres[SUP]1,2[/SUP], suggesting a similar origin for these two objects. Hygiea suffered a giant impact more than 2 Gyr ago[SUP]3[/SUP] that is at the origin of one of the largest asteroid families. However, Hygeia has never been observed with sufficiently high resolution to resolve the details of its surface or to constrain its size and shape. Here, we report high-angular-resolution imaging observations of Hygiea with the VLT/SPHERE instrument ( 20 mas at 600 nm) that reveal a basin-free nearly spherical shape with a volume- equivalent radius of 217 ± 7 km, implying a density of 1,944 ± 250 kg m[SUP]-[/SUP][SUP]3[/SUP] to 1σ. In addition, we have determined a new rotation period for Hygiea of 13.8 h, which is half the currently accepted value. Numerical simulations of the family-forming event show that Hygiea's spherical shape and family can be explained by a collision with a large projectile (diameter 75-150 km). By comparing Hygiea's sphericity with that of other Solar System objects, it appears that Hygiea is nearly as spherical as Ceres, opening up the possibility for this object to be reclassified as a dwarf planet.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Vernazza, Pierre; LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Aix Marseille Université, CNRS, Marseille, France
Jorda, Laurent; LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Aix Marseille Université, CNRS, Marseille, France
Ševeček, P.; Institute of Astronomy, Charles University, Prague, Czech Republic
Brož, M.; Institute of Astronomy, Charles University, Prague, Czech Republic
Viikinkoski, Matti; Mathematics and Statistics, Tampere University, Tampere, Finland
Hanuš, Josef; Institute of Astronomy, Charles University, Prague, Czech Republic
Carry, B.; Laboratoire Lagrange, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Drouard, Alexis; LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Aix Marseille Université, CNRS, Marseille, France
Ferrais, Marin ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Marsset, M.; Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA, USA
Marchis, F.; LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Aix Marseille Université, CNRS, Marseille, France ; SETI Institute, Carl Sagan Center, Mountain View, CA, USA
Birlan, M.; IMCCE, Observatoire de Paris, Paris, France
Podlewska-Gaca, Edyta; Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland ; Institute of Physics, University of Szczecin, Szczecin, Poland
Jehin, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Bartczak, P.; Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
Dudzinski, G.; Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
Berthier, J.; IMCCE, Observatoire de Paris, Paris, France
Castillo-Rogez, J.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Cipriani, F.; European Space Agency, ESTEC - Scientific Support Office, Noordwijk, the Netherlands
Colas, F.; IMCCE, Observatoire de Paris, Paris, France
DeMeo, F.; Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA, USA
Dumas, C.; TMT Observatory, Pasadena, CA, USA
Durech, J.; Institute of Astronomy, Charles University, Prague, Czech Republic
Fetick, R.; LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Aix Marseille Université, CNRS, Marseille, France ; ONERA, The French Aerospace Lab, Chatillon, France
Fusco, T.; LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Aix Marseille Université, CNRS, Marseille, France ; ONERA, The French Aerospace Lab, Chatillon, France
Grice, J.; Laboratoire Lagrange, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France ; School of Physical Sciences, The Open University, Milton Keynes, UK
Kaasalainen, M.; Mathematics and Statistics, Tampere University, Tampere, Finland
Kryszczynska, A.; Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
Lamy, P.; LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Aix Marseille Université, CNRS, Marseille, France
Le Coroller, H.; LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Aix Marseille Université, CNRS, Marseille, France
Marciniak, A.; Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
Michalowski, T.; Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
Michel, Patrick; Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, France
Rambaux, N.; IMCCE, Observatoire de Paris, Paris, France
Santana-Ros, T.; Departamento de Fı́sica, Ingenierı́a de Sistemas y Teorı́a de la Señal, Universidad de Alicante, Alicante, Spain ; Institut de Ciències del Cosmos, Universitat de Barcelona, Barcelona, Spain
Tanga, P.; Laboratoire Lagrange, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Vachier, F.; IMCCE, Observatoire de Paris, Paris, France
Vigan, A.; LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Aix Marseille Université, CNRS, Marseille, France
Witasse, O.; European Space Agency, ESTEC - Scientific Support Office, Noordwijk, the Netherlands
Yang, B.; European Southern Observatory (ESO), Santiago, Chile
Gillon, Michaël ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Exotic
Benkhaldoun, Z.; Oukaimeden Observatory, High Energy Physics and Astrophysics Laboratory, Cadi Ayyad University, Marrakesh, Morocco
Szakats, R.; Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Hungary
Hirsch, R.; Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
Duffard, R.; Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, Granada, Spain
Chapman, A.; Observatorio de Buenos Aires, Buenos Aires, Argentina
Maestre, J. L.; Observatorio de Albox, Albox, Spain)
Takir, D. & Emery, J. P. Outer main belt asteroids: identification and distribution of four 3-μm spectral groups. Icarus 219, 641–654 (2012).
Vernazza, P. et al. Different origins or different evolutions? Decoding the spectral diversity among C-type asteroids. Astron. J. 153, 72 (2017).
Carruba, V., Domingos, R. C., Huaman, M. E., dos Santos, C. R. & Souami, D. Dynamical evolution and chronology of the Hygiea asteroid family. Mon. Not. R. Astron. Soc. 437, 2279–2290 (2014).
Vernazza, P. et al. The impact crater at the origin of the Julia family detected with VLT/SPHERE? Astron. Astrophys. 618, A154 (2018).
Thalmann, C. et al. SPHERE ZIMPOL: overview and performance simulation. Proc. SPIE 7014, 70143F (2008).
Fusco, T. et al. Deconvolution of astronomical images obtained from ground-based telescopes with adaptive optics. Proc. SPIE 4839, 1065–1075 (2003).
Fetick, R. et al. Closing the gap between Earth-based and interplanetary mission observations: Vesta seen by VLT/SPHERE. Astron. Astrophys. 623, A6 (2019).
Viikinkoski, M., Kaasalainen, M. & Durech, J. ADAM: a general method for using various data types in asteroid reconstruction. Astron. Astrophys. 576, A8 (2015).
Michalowski, T. et al. The spin vector of asteroid 10 Hygiea. Astron. Astrophys. Suppl. Ser. 91, 53–59 (1991).
Chandrasekhar, R. Ellipsoidal Figures of Equilibrium (Dover Publications, 1987).
Park, R. S. et al. High-resolution shape model of Ceres from stereophotoclinometry using Dawn imaging data. Icarus 319, 812–827 (2019).
Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Michel, P. et al.) 297–321 (Univ. Arizona Press, 2015).
Thomas, P. C. et al. Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science 277, 1492–1495 (1997).
Benz, W. & Asphaug, E. Impact simulations with fracture. I. Method and tests. Icarus 107, 98–116 (1994).
Jutzi, M., Holsapple, K., Wünneman, K. & Michel, P. in Aste roids IV (eds Michel, P. et al.) 679–699 (Univ. Arizona Press, 2015).
Ševeček, P. et al. SPH/N-body simulations of small (D = 10 km) asteroidal breakups and improved parametric relations for Monte-Carlo collisional models. Icarus 296, 239–256 (2017).
Tillotson, J. H. Metallic Equations of State for Hypervelocity Impact General Atomic Report GA-3216 (General Dynamics, 1962).
von Mises, R. Mechanik der festen Körper in plastisch-deformablen Zustand. Nachr. d. Kgl. Ges. Wiss. Göttingen, Math.-phys. Klasse 4, 582–592 (1913).
Grady, D. & Kipp, M. Continuum modelling of explosive fracture in oil shale. Int. J. Rock Mech. Min. Sci. 17, 147–157 (1980).
Barnes, J. & Hut, P. A hierarchical O(N log N) force-calculation algorithm. Nature 324, 446–449 (1986).
Michel, P., Benz, W., Tanga, P. & Richardson, D. C. Collisions and gravitational reaccumulation: forming asteroid families and satellites. Science 294, 1696–1700 (2001).
Tanga, P., Hestroffer, D., Delbo, M. & Richardson, D. C. Asteroid rotation and shapes from numerical simulations of gravitational re-accumulation. Planet. Space Sci. 57, 193–200 (2009).
Melosh, H. J. & Ivanov, B. A. Impact crater collapse. Ann. Rev. Earth Planet. Sci. 27, 385–415 (1999).
Riller, U. et al. Rock fluidization during peak-ring formation of large impact structures. Nature 562, 511–518 (2018).
Jutzi, M., Asphaug, E., Gillet, P., Barrat, J.-A. & Benz, W. The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature 494, 207–210 (2013).
Wadell, H. Volume, shape and roundness of quartz particles. J. Geol. 43, 250–280 (1935).
Warner, B. D., Harris, A. W. & Pravec, P. The asteroid lightcurve database. Icarus 202, 134–146 (2009).
Jehin, E. et al. TRAPPIST: TRAnsiting Planets and PlanetesImals Small Telescope. Messenger 145, 2–6 (2011).
Pettengill, G. H., Ford, P. G., Johnson, W. T. K., Raney, R. K. & Soderblom, L. A. Magellan: radar performance and data products. Science 252, 260–265 (1991).
Thomas, P. C. et al. The shape of Gaspra. Icarus 107, 23–36 (1994).
Hudson, R. S. et al. Asteroid Radar Shape Models, 6489 Golevka PDS ID EAR-A-5-DDR-RADARSHAPE-MODELS-V1.1:RSHAPES-6489GOLEVKA-200006 (NASA PDS, 2000).
Ostro, S. J. et al. Asteroid Radar Shape Models, 1620 Geographos PDS ID EAR-A-5-DDR-RADARSHAPE-MODELS-V1.1:RSHAPES-1620GEOGRAPHOS-200006 (NASA PDS, 2000).
Smith, D. E. et al. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001).
Jorda, L. et al. Asteroid (2867) Steins: shape, topography and global physical properties from OSIRIS observations. Icarus 221, 1089–1100 (2012).
Preusker, F. et al. Stereo-photogrammetrically derived topography of asteroid (4) Vesta. Proc. American Geophysical Union, Meeting Number 93 abstr. P43E-05 (2012).
Jaumann, R. et al. Vesta’s shape and morphology. Science 336, 687–690 (2012).
Farnham, T. L. Shape Model of Asteroid 21 Lutetia PDS ID RO-A-OSINAC/OSIWAC-5-LUTETIA-SHAPE-V1.0 (NASA PDS, 2013).
Preusker, F. et al. Topography of Mercury: a global model from MESSENGER orbital stereo mapping. Proc. Ninth Conference European Planetary Science Congress Vol. 9 abstr. EPSC2014-709 (2014).
Preusker, F. et al. Dawn at Ceres—shape model and rotational state. Proc. 47th Lunar and Planetary Science Conference 1954 (LPI, 2016).
Viikinkoski, M. et al. (16) Psyche: a mesosiderite-like asteroid? Astron. Astrophys. 619, L3 (2018).
Hanuš, J. et al. The shape of (7) Iris as evidence of an ancient large impact? Astron. Astrophys. 624, A121 (2019).
Hiesinger, H. et al. Cratering on Ceres: implications for its crust and evolution. Science 353, aaf4759 (2016).
Bland, M. T. et al. Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nat. Geosci. 9, 538–542 (2016).
Knezevic, Z. & Milani, A. Proper element catalogs and asteroid families. Astron. Astrophys. 403, 1165–1173 (2003).
Zappala, V., Cellino, A., Farinella, P. & Milani, A. Asteroid families. II. Extension to unnumbered multiopposition asteroids. Astron. J. 107, 772–801 (1994).
Ivezic, Ž. et al. Solar System objects observed in the Sloan Digital Sky Survey commissioning data. Astron. J. 122, 2749–2784 (2001).
Nugent, C. R. et al. NEOWISE Reactivation Mission Year One: preliminary asteroid diameters and albedos. Astrophys. J. 814, 117 (2015).
Usui, F. et al. Asteroid catalog using AKARI: AKARI/IRC Mid-infrared Asteroid Survey. Pub. Astron. Soc. Jpn 63, 1117–1138 (2011).
Schäfer, C. et al. A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects. Astron. Astrophys. 590, A19 (2016).
Collins, G. S., Melosh, H. J. & Ivanov, B. A. Modeling damage and deformation in impact simulations. Met. Planet. Sci. 39, 217–231 (2004).
Silber, E. A., Osinski, G. R., Johnson, B. C. & Grieve, R. A. F. Effect of impact velocity and acoustic fluidization on the simple-to-complex transition of lunar craters. J. Geophys. Res. Planets 122, 800–821 (2017).